1. Find the nonnegative integer a < 28 which is represented by the following pairs

(a) (0,0)	(b) (1,1)
(c) (2,1)	(d) (3,5)

where each pair (κ, ℓ) represents the system of congruences

$$\left. \begin{array}{l} a \equiv \kappa \mod 4 \\ a \equiv \ell \mod 7 \end{array} \right\}.$$

Solution.

(a) a must satisfy

$$\begin{array}{c} a \equiv 0 \mod 4 \\ a \equiv 0 \mod 7 \end{array}$$

which obviously has a = 0 as solution. This solution is unique in the given range $0 \le a < 28$ by the Chinese rimender theorem.

(b) In this case we must consider the system

$$\begin{array}{c} a \equiv 1 \mod 4 \\ a \equiv 1 \mod 7 \end{array}$$

which, by the same reason as in (a) has solution a = 1.

(c) Now a must satisfy

$$\begin{array}{l} a \equiv 2 \mod 4 \\ a \equiv 1 \mod 7 \end{array} \right\}.$$

Imitating the proof of the Chinese rime inder theorem, a solution is given by $a = 4\alpha + 7\beta$ where

$$7\beta \equiv 2 \mod 4 \tag{1}$$

and

$$4\alpha \equiv 1 \mod 7. \tag{2}$$

Since $7 \equiv 3 \mod 4$, (1) is equivalent to $3\beta \equiv 2 \mod 4$ and hence

$$\beta \equiv \begin{array}{c} \beta \\ \uparrow \\ 9 \equiv 1 \mod 4 \end{array} \begin{array}{c} 9\beta \\ \uparrow \\ 3\beta \equiv 2 \mod 4 \end{array} \begin{array}{c} 3 \cdot 2 = 6 \equiv 2 \mod 4. \end{array}$$

For (2) we have

$$\alpha \underset{\substack{\uparrow \\ 8 \equiv 1 \mod 7 \\ \text{by } (2)}}{\equiv} 2 \mod 7.$$

Thus, taking $\alpha = 2$ and $\beta = 2$ we have $a = 4\alpha + 7\beta = 22$ (again, according to the Chinese reminder theorem, this is the unique solution in the range $0 \le a < 28$).

(*d*) Next we look at the system

$$\begin{array}{l} a \equiv 3 \mod 4 \\ a \equiv 5 \mod 7 \end{array} \right\}.$$

Proceeding as in part (c) we look for a solution of the form $a=4\alpha+7\beta$ so that

$$7\beta \equiv 3 \mod 4 \tag{3}$$

and

$$4\alpha \equiv 5 \mod 7. \tag{4}$$

As before, from (3) we have

$$\beta \equiv 3 \cdot 3 = 9 \equiv 1 \mod 4,$$

and from (4)

$$\alpha \equiv 2 \cdot 5 = 10 \equiv 3 \mod 7.$$

- This, with $\alpha = 3$ and $\beta = 1$, gives $a = 4\alpha + 7\beta = 19$.
- 2. Using Fermat's little theorem show that if n is a positive integer, $n^7 \equiv n \mod 42$.

Note: Fermat's little theorem will be stated and proved next Tuesday in class. It states that $a^{p-1} \equiv 1 \mod p$ for any prime p and any integer a so that $p \nmid a$. Equivalently $a^p \equiv a \mod p$ for any integer a.

Solution. Note first that the given moduli $42 = 2 \cdot 3 \cdot 7$ and that by Fermat's theorem

$$n^{7} = n \cdot (n^{2})^{3} \equiv n \cdot n^{3} = n^{4} = (n^{2})^{2} \equiv n^{2} \equiv n \mod 2,$$

 $n^{7} = n \cdot (n^{3})^{2} \equiv n \cdot n^{2} = n^{3} \equiv n \mod 3,$

and

 $n^7 \equiv n \mod 7.$

This means that $2 \mid n^7 - n$, $3 \mid n^7 - n$ and $7 \mid n^7 - n$ which implies that $42 \mid n^7 - n$ because 2, 3 and 7 are primes. This is the same as $n^7 \equiv n \mod 42$ as we wanted.

3. Let $m_1, m_2 > 1$. Show that the system of linear congruences

$$\begin{array}{l} x \equiv a \mod m_1 \\ x \equiv b \mod m_2 \end{array}$$

has solutions for any integers a and b if, and only if, m_1 and m_2 are relatively prime.

Solution. By the Chinese remainder theorem we only need to show that if the given system has always solutions then m_1 and m_2 must be relatively prime. To do so, note that if we can solve for a pair of given integers a and b then

$$\begin{cases} x = a + \kappa m_1 \\ x = b + \ell m_2 \end{cases} \Rightarrow b - a = \kappa m_1 - \ell m_2 \Rightarrow \gcd(m_1, m_2) \mid (b - a).$$

Since a and b can be chosen arbitrarily we conclude that $gcd(m_1, m_2) = 1$ (just take a = 0 and b = 1 for example).

- 4. Let $\varphi(m) = \{1 \le k < m / \text{gcd}(k, m) = 1\}$ be Euler's function. Show that:
 - (a) For any prime p and any integer $\kappa \ge 1$, $\varphi(p^{\kappa}) = p^{\kappa-1}(p-1)$.
 - (b) Use the multiplicative property of φ to prove that if $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k}$ is the prime factorization of m, then

$$\varphi(m) = m\left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_k}\right).$$

(c) Use (b) to show that, in particular, for any integer $\kappa \ge 1$, $\varphi(m^{\kappa}) = m^{\kappa-1}\varphi(m)$.

Note: Recall that φ being multiplicative means that $\varphi(n \cdot m) = \varphi(n) \cdot \varphi(m)$ if $m, n \ge 1$ are relatively prime.

Solution.

(a) An integer $1 \le k \le p^{\kappa}$ will not be relativly prime to p^{κ} if it is of the form $k = \ell \cdot p$. The restriction for ℓ is then $1 \le \ell \le p^{\kappa-1}$ which give us $p^{\kappa-1}$ such k's. Therefore

$$\varphi\left(p^{\kappa}\right) = p^{\kappa} - p^{\kappa-1} = p^{\kappa-1}(p-1).$$

(b) Since φ is multiplicative

$$\begin{split} \varphi(m) &= \varphi\left(p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}\right) = \varphi\left(p_1^{\alpha_1}\right) \cdot \varphi\left(p_2^{\alpha_2}\right) \cdot \ldots \cdot \varphi\left(p_k^{\alpha_k}\right) \\ &= p_1^{\alpha_1 - 1}(p_1 - 1) \cdot p_2^{\alpha_2 - 1}(p_2 - 1) \cdot \ldots \cdot p_k^{\alpha_k - 1}(p_k - 1) \\ &= p_1^{\alpha_1} \left(1 - \frac{1}{p_1}\right) \cdot p_2^{\alpha_2} \left(1 - \frac{1}{p_2}\right) \cdot \ldots \cdot p_k^{\alpha_k} \left(1 - \frac{1}{p_k}\right) \\ &= p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k} \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_k}\right) \\ &= m \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_k}\right). \end{split}$$

(c) Since $m^{\kappa} = p_1^{\kappa \alpha_1} \cdot p_2^{\kappa \alpha_2} \cdot \ldots \cdot p_k^{\kappa \alpha_k}$ is the prime factorization of m^{κ} if $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}$ is that of m, by (b) we have

$$\varphi(m^{\kappa}) = m^{\kappa} \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_k}\right)$$
$$= m^{\kappa - 1} \cdot m \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_k}\right)$$
$$= m^{\kappa - 1} \cdot \varphi(m).$$

5. Let p and q be two different primes, put m = pq and suppose that $r \equiv 1 \mod (p-1)$ and $r \equiv 1 \mod (q-1)$. Show that for any integer a,

$$a^r \equiv a \mod m.$$

Solution. Since $r \equiv 1 \mod (p-1)$ there exists an integer κ such that $r = 1 + \kappa(p-1)$. Hence, by Fermat's little theorem, if $p \nmid a$ we have

$$a^{r} = a^{1+\kappa(p-1)} = a \left(a^{p-1}\right)^{\kappa} = a \mod p,$$

and so $p \mid (a^r - a)$. Trivially $p \mid (a^r - a)$ when $p \mid a$ and so $p \mid (a^r - a)$ for any integer a. Likewise $q \mid (a^r - a)$ and since p and q are distinct primes we conclude that $m = pq \mid (a^r - a)$. This means that $a^r \equiv a \mod m$ as was to be shown.

Remark. The result in this exercise also holds if $m = p_1 \cdot p_2 \cdot \ldots \cdot p_k$ is the product of k distinct primes and $r \equiv 1 \mod p_i$ for all $i = 1, 2 \ldots, k$. Note now that exercise 2 follows from this with $p_1 = 2, p_2 = 3$ and $p_3 = 7$.