
A Proof Theorist’s Guide to First Aid
CUT-Elimination and Other Results of Classical Proof Theory

Logan Heath

Graduate Logic Seminar
University of Wisconsin-Madison

11/20/2023



A Question for You

When are correct proofs also “bad” proofs?



Sequents

Definition

If Γ and ∆ are finite sequences of logical formulas, then Γ ⇒ ∆ is a
sequent. The sequences Γ and ∆ are, respectively, the antecedent and
succedent of the sequent and either may be empty.

The intended meaning of a sequent Γ ⇒ ∆ is that if all the formulas in
the antecedent are true, then at least one formula in the succedent is
true.

Definition

An axiom is a non-emtpy sequent of the form φ⇒ φ where φ is a logical
formula.



Rules of Inference

Definition (Operational Rules)

φ,Γ ⇒ Θ
∧L1

(φ ∧ ψ),Γ ⇒ Θ

ψ,Γ ⇒ Θ
∧L2

(φ ∧ ψ),Γ ⇒ Θ

φ,Γ ⇒ Θ ψ,Γ ⇒ Θ
∨L

(φ ∨ ψ),Γ ⇒ Θ

Γ ⇒ Θ, φ ψ,∆ ⇒ Λ
→L

(φ→ ψ),Γ,∆ ⇒ Θ,Λ

Γ ⇒ Θ, φ
¬L¬φ,Γ ⇒ Θ

Γ ⇒ Θ, φ Γ ⇒ Θ, ψ
∧R

Γ ⇒ Θ, (φ ∧ ψ)

Γ ⇒ Θ, φ
∨R1

Γ ⇒ Θ, (φ ∨ ψ)

Γ ⇒ Θ, ψ
∨R2

Γ ⇒ Θ, (φ ∨ ψ)

φ,Γ ⇒ Θ, ψ
→R

Γ ⇒ Θ, (φ→ ψ)

φ,Γ ⇒ Θ
¬R

Γ ⇒ Θ,¬φ



Rules of Inference Continued

Definition (Operational Rules Continued)

φ(t),Γ ⇒ Θ
∀L∀xφ(x),Γ ⇒ Θ

φ(a),Γ ⇒ Θ
! ∃L∃xφ(x),Γ ⇒ Θ

Γ ⇒ Θ, φ(a)
! ∀R

Γ ⇒ Θ,∀xφ(x)

Γ ⇒ Θ, φ(t)
∃R

Γ ⇒ Θ,∃xφ(x)

In the inference rules above, the formulas occurring in Γ, Θ, ∆, and Λ
are called side formulas. The remaining formulas in the premise(s) are
called auxiliary formulas and the remaining formulas in the conclusion are
called principal formulas.



Rules of Inference Continued

Definition (Structural Rules)

Γ ⇒ Θ
WL

φ,Γ ⇒ Θ

φ,φ,Γ ⇒ Θ
CL

φ,Γ ⇒ Θ

∆, φ, ψ,Γ ⇒ Θ
IL

∆, ψ, φ,Γ ⇒ Θ

Γ ⇒ Θ
WR

Γ ⇒ Θ, φ

Γ ⇒ Θ, φ, φ
CR

Γ ⇒ Θ, φ

Γ ⇒ Θ, ψ, φ,Λ
IR

Γ ⇒ Θ, φ, ψ,Λ

Γ ⇒ Θ, φ φ,∆ ⇒ Λ
CUT

Γ,∆ ⇒ Θ,Λ

Formulas appearing in Γ, Θ, ∆, and Λ will again be called side formulas.
The remaining formulas are called principal formulas. Structural rules do
not have auxiliary formulas. The principal formula of a CUT inference
will be called the CUT-formula of the inference.



LK Proofs

Definition (LK Proofs)

A proof in LK is a finite tree of sequents where the leaf nodes are axioms
and all other nodes in the tree follow from the node(s) immediately
above by a rule of inference. A sequent Γ ⇒ ∆ is provable in LK if it is
the root node of some LK proof. A formula φ is provable in LK if the
sequent ⇒ φ is provable in LK.



The Subformula Property

We will think of proofs utilizing CUT as “unhealthy” in some sense, while
CUT-free proofs will have a number of nice properties. The most useful
for us will be the following:

Lemma (The Subformula Property)

Let π be a CUT-free proof with end-sequent Γ ⇒ ∆ and let Θ ⇒ Λ be
any sequent occurring in π. Then every formula in Θ,Λ occurs as a
sub-formula of some formula in Γ,∆.

We will use the Subformula Property and the equivalence of LK with
LK-CUT to establish the consistency of LK.



The Consistency of LK

Corollary (LK is Consistent)

If LK is equivalent to LK-CUT, then there is no formula φ such that both
φ and ¬φ are provable in LK.

Proof.

If there were such a formula φ with proofs π1 and π2 of φ and ¬φ,
respectively, then there would also be a proof of the empty sequent:

π2

⇒ ¬φ

π1

⇒ φ
¬L¬φ ⇒

CUT⇒
From this we could obtain a CUT-free proof of the empty sequent, but
such a proof can consist only of empty sequents by The Subformula
Property. Contradiction.



The CUT-Elimination Theorem

Theorem

If Γ ⇒ ∆ is provable in LK, then Γ ⇒ ∆ has a proof in LK-CUT.

Definition (MIX)

We define a new structural rule

Γ ⇒ Θ ∆ ⇒ Λ
MIX

Γ,∆∗ ⇒ Θ∗,Λ

where ∆ and Θ are both assumed to contain at least one occurrence of a
given formula φ, the MIX-formula of the inference, and ∆∗ and Θ∗ are
obtained from ∆ and Θ, respectively, by removing all occurrences of φ.

Lemma

A sequent Γ ⇒ ∆ is provable in LK iff it is provable in LK-CUT+MIX



The CUT-Elimination Theorem

Theorem

If Γ ⇒ ∆ is provable in LK, then Γ ⇒ ∆ has a proof in LK-CUT.

Definition (MIX)

We define a new structural rule

Γ ⇒ Θ ∆ ⇒ Λ
MIX

Γ,∆∗ ⇒ Θ∗,Λ

where ∆ and Θ are both assumed to contain at least one occurrence of a
given formula φ, the MIX-formula of the inference, and ∆∗ and Θ∗ are
obtained from ∆ and Θ, respectively, by removing all occurrences of φ.

Lemma

A sequent Γ ⇒ ∆ is provable in LK iff it is provable in LK-CUT+MIX



The CUT-Elimination Theorem

Theorem

If Γ ⇒ ∆ is provable in LK, then Γ ⇒ ∆ has a proof in LK-CUT.

Definition (MIX)

We define a new structural rule

Γ ⇒ Θ ∆ ⇒ Λ
MIX

Γ,∆∗ ⇒ Θ∗,Λ

where ∆ and Θ are both assumed to contain at least one occurrence of a
given formula φ, the MIX-formula of the inference, and ∆∗ and Θ∗ are
obtained from ∆ and Θ, respectively, by removing all occurrences of φ.

Lemma

A sequent Γ ⇒ ∆ is provable in LK iff it is provable in LK-CUT+MIX



The CUT-Elimination Theorem

Theorem

If Γ ⇒ ∆ is provable in LK-CUT+MIX, then Γ ⇒ ∆ has a proof in
LK-CUT.

Proof.

We will proceed by showing that it is always possible to remove, say, the
topmost, leftmost MIX. The result then follows by induction on the
number of MIX inferences occurring in the proof. Since we can focus our
attention on sub-proofs containing a single MIX inference as their last
inference, we can actually just focus on proofs of this form.



The CUT-Elimination Theorem

Theorem

If Γ ⇒ ∆ is provable in LK-CUT+MIX, then Γ ⇒ ∆ has a proof in
LK-CUT.

Proof.

We will proceed by showing that it is always possible to remove, say, the
topmost, leftmost MIX. The result then follows by induction on the
number of MIX inferences occurring in the proof. Since we can focus our
attention on sub-proofs containing a single MIX inference as their last
inference, we can actually just focus on proofs of this form.



The Proof

Lemma

If Γ ⇒ ∆ has a proof in LK-CUT+MIX containing exactly one MIX
inference as its last inference, then Γ ⇒ ∆ has a proof in LK-CUT.

Proof (Sketch).

We will associate to our proof a pair of natural numbers and then “push”
the MIX inference upwards through the tree. As we do this we will
sometimes obtain new MIX inferences, but the sub-proofs ending in these
new MIX inferences will have associated to them pairs of natural
numbers which are less in the lexicographic ordering than the pair we
started with. Induction then takes over and we are done. Essentially we
“push” our MIX inferences upwards until we have “pushed” them all the
way out of our tree.



The Proof

Lemma

If Γ ⇒ ∆ has a proof in LK-CUT+MIX containing exactly one MIX
inference as its last inference, then Γ ⇒ ∆ has a proof in LK-CUT.

Proof (Sketch).

We will associate to our proof a pair of natural numbers and then “push”
the MIX inference upwards through the tree. As we do this we will
sometimes obtain new MIX inferences, but the sub-proofs ending in these
new MIX inferences will have associated to them pairs of natural
numbers which are less in the lexicographic ordering than the pair we
started with. Induction then takes over and we are done. Essentially we
“push” our MIX inferences upwards until we have “pushed” them all the
way out of our tree.



The Proof: What do We Induct On?

Proof (Sketch).

We need to assign a measure of complexity to our proofs so that we can
carry out the desired induction. Let π be a proof containing exactly one
MIX inference as its last inference.

• Define the degree d(π) of π to be the degree of the MIX-formula of
π’s MIX inference.

• Define the left rank rkl(π) of π to be the maximum number of
consecutive sequents which each contain the MIX formula in their
succedent and constitute a path terminating in the left premise of
the MIX. Define the right rank rkr(π) of π similarly.

• Define the rank rk(π) of π to be rkl(π) + rkr(π).

Our proof then will be by induction on pairs (d(π), r(π)) ordered
lexicographically.



The Proof: What do We Induct On?

Proof (Sketch).

We need to assign a measure of complexity to our proofs so that we can
carry out the desired induction. Let π be a proof containing exactly one
MIX inference as its last inference.

• Define the degree d(π) of π to be the degree of the MIX-formula of
π’s MIX inference.

• Define the left rank rkl(π) of π to be the maximum number of
consecutive sequents which each contain the MIX formula in their
succedent and constitute a path terminating in the left premise of
the MIX. Define the right rank rkr(π) of π similarly.

• Define the rank rk(π) of π to be rkl(π) + rkr(π).

Our proof then will be by induction on pairs (d(π), r(π)) ordered
lexicographically.



The Proof: What do We Induct On?

Proof (Sketch).

We need to assign a measure of complexity to our proofs so that we can
carry out the desired induction. Let π be a proof containing exactly one
MIX inference as its last inference.

• Define the degree d(π) of π to be the degree of the MIX-formula of
π’s MIX inference.

• Define the left rank rkl(π) of π to be the maximum number of
consecutive sequents which each contain the MIX formula in their
succedent and constitute a path terminating in the left premise of
the MIX. Define the right rank rkr(π) of π similarly.

• Define the rank rk(π) of π to be rkl(π) + rkr(π).

Our proof then will be by induction on pairs (d(π), r(π)) ordered
lexicographically.



The Proof: What do We Induct On?

Proof (Sketch).

We need to assign a measure of complexity to our proofs so that we can
carry out the desired induction. Let π be a proof containing exactly one
MIX inference as its last inference.

• Define the degree d(π) of π to be the degree of the MIX-formula of
π’s MIX inference.

• Define the left rank rkl(π) of π to be the maximum number of
consecutive sequents which each contain the MIX formula in their
succedent and constitute a path terminating in the left premise of
the MIX. Define the right rank rkr(π) of π similarly.

• Define the rank rk(π) of π to be rkl(π) + rkr(π).

Our proof then will be by induction on pairs (d(π), r(π)) ordered
lexicographically.



The Proof: What do We Induct On?

Proof (Sketch).

We need to assign a measure of complexity to our proofs so that we can
carry out the desired induction. Let π be a proof containing exactly one
MIX inference as its last inference.

• Define the degree d(π) of π to be the degree of the MIX-formula of
π’s MIX inference.

• Define the left rank rkl(π) of π to be the maximum number of
consecutive sequents which each contain the MIX formula in their
succedent and constitute a path terminating in the left premise of
the MIX. Define the right rank rkr(π) of π similarly.

• Define the rank rk(π) of π to be rkl(π) + rkr(π).

Our proof then will be by induction on pairs (d(π), r(π)) ordered
lexicographically.



The Proof: How Does it Work?

Consider the following proof π where F (x) is atomic:

F (t) ⇒ F (t)
∃R

F (t) ⇒ ∃xF (x)
1

∃xF (x)
5
⇒ ∃xF (x)

¬L
¬∃xF (x), ∃xF (x)

4
⇒

WR
¬∃xF (x), ∃xF (x)

3
⇒ G(s)

G(s) ⇒ G(s)
WL

∃xF (x)
4
⇒ G(s)

IL
G(s), ∃xF (x)

3
, G(s) ⇒ G(s)

∨L
¬∃xF (x) ∨G(s), ∃xF (x)

2
⇒ G(s)

IL
∃xF (x)

1
,¬∃xF (x) ∨G(s) ⇒ G(s)

MIX
F (t),¬∃xF (x) ∨G(s) ⇒ G(s)

We have d(π) = 1 since the MIX-formula, ∃xF (x), has only one logical
symbol. We also have rk(π) = rkl(π) + rkr(π) = 1 + 5 = 6.

Our first step will be to push the MIX upwards past the IL inference to
reduce the right rank while keeping the degree and left rank fixed.



The Proof: How Does it Work?

This results in

F (t) ⇒ F (t)
∃R

F (t) ⇒ ∃xF (x)
1

∃xF (x)
4
⇒ ∃xF (x)

¬L
¬∃xF (x), ∃xF (x)

3
⇒

WR
¬∃xF (x), ∃xF (x)

2
⇒ G(s)

G(s) ⇒ G(s)
WL

∃xF (x)
3
, G(s) ⇒ G(s)

IL
G(s), ∃xF (x)

2
⇒ G(s)

∨L
¬∃xF (x) ∨G(s), ∃xF (x)

1
⇒ G(s)

MIX
F (t),¬∃xF (x) ∨G(s) ⇒ G(s)

d(π) = 1
rk(π) = rkl(π) + rkr(π) = 1 + 4 = 5

Our next step will be to push our MIX inference up past the ∨L inference.



The Proof: How Does it Work?

Since ∨L has two premises we obtain a proof with two MIX inferences.
However, in each of the corresponding sub-proofs the right ranks will be
less than before and the degrees and left ranks will stay the same:

π1


F (t) ⇒ F (t)

∃R
F (t) ⇒ ∃xF (x)

1

∃xF (x)
3
⇒ ∃xF (x)

¬L
¬∃xF (x), ∃xF (x)

2
⇒

WR
¬∃xF (x), ∃xF (x)

1
⇒ G(s)

MIX
F (t),¬∃xF (x) ⇒ G(s)

IL¬∃xF (x), F (t) ⇒ G(s)

F (t) ⇒ F (t)
∃R

F (t) ⇒ ∃xF (x)
1

G(s) ⇒ G(s)
WL

∃xF (x)
2
, G(s) ⇒ G(s)

IL
G(s), ∃xF (x)

1
⇒ G(s)

MIX
F (t), G(s) ⇒ G(s)

IL
G(s), F (t) ⇒ G(s)


π2

∨L¬∃xF (x) ∨G(s), F (t) ⇒ G(s)
IL

F (t),¬∃xF (x) ∨G(s) ⇒ G(s)

d(π1) = d(π2) = 1
rk(π1) = rkl(π1) + rkr(π1) = 1 + 3 = 4
rk(π2) = rkl(π2) + rkr(π2) = 1 + 2 = 3



The Proof: How Does it Work?

We push our MIX inferences upwards again to reduce the ranks of our
sub-proofs:

π1


F (t) ⇒ F (t)

∃R
F (t) ⇒ ∃xF (x)

1

∃xF (x)
2
⇒ ∃xF (x)

¬L
¬∃xF (x), ∃xF (x)

1
⇒

MIX
F (t),¬∃xF (x) ⇒

WR
F (t),¬∃xF (x) ⇒ G(s)

IL¬∃xF (x), F (t) ⇒ G(s)

F (t) ⇒ F (t)
∃R

F (t) ⇒ ∃xF (x)
1

G(s) ⇒ G(s)
WL

∃xF (x)
1
, G(s) ⇒ G(s)

MIX
F (t), G(s) ⇒ G(s)

IL
G(s), F (t) ⇒ G(s)

π2
∨L¬∃xF (x) ∨G(s), F (t) ⇒ G(s)

IL
F (t),¬∃xF (x) ∨G(s) ⇒ G(s)

d(π1) = d(π2) = 1
rk(π1) = rkl(π1) + rkr(π1) = 1 + 2 = 3
rk(π2) = rkl(π2) + rkr(π2) = 1 + 1 = 2



The Proof: How Does it Work?

Now we can eliminate one of the MIX inferences entirely and reduce the
rank of the other:

π1


F (t) ⇒ F (t)

∃R
F (t) ⇒ ∃xF (x)

1
∃xF (x)

1
⇒ ∃xF (x)

MIX
F (t) ⇒ ∃xF (x)

¬L¬∃xF (x), F (t) ⇒
WR¬∃xF (x), F (t) ⇒ G(s)

G(s) ⇒ G(s)
WL

F (t), G(s) ⇒ G(s)
IL

G(s), F (t) ⇒ G(s)
∨L¬∃xF (x) ∨G(s), F (t) ⇒ G(s)

IL
F (t),¬∃xF (x) ∨G(s) ⇒ G(s)

d(π1) = 1
rk(π1) = rkl(π1) + rkr(π1) = 1 + 1 = 2



The Proof: How Does it Work?

Finally, we remove the remaining MIX inference.

F (t) ⇒ F (t)
∃R

F (t) ⇒ ∃xF (x)
¬L¬∃xF (x), F (t) ⇒

WR¬∃xF (x), F (t) ⇒ G(s)

G(s) ⇒ G(s)
WL

F (t), G(s) ⇒ G(s)
IL

G(s), F (t) ⇒ G(s)
∨L¬∃xF (x) ∨G(s), F (t) ⇒ G(s)

IL
F (t),¬∃xF (x) ∨G(s) ⇒ G(s)



Peano Arithmetic

We work in the signature {0, s,+, ·}. We obtain the system PA by
adding to LK a rule of inference for induction

φ(a),Γ ⇒ Θ, φ(s(a))
! CJ
φ(0),Γ ⇒ Θ, φ(t)

and admitting as axioms the following sequents:

PA1 ⇒ t = t

PA2 t1 = t2 ⇒ t2 = t1

PA3 t1 = t2, t2 = t3 ⇒ t1 = t3

PA4 s(t) = 0 ⇒

PA5 t1 = t2 ⇒ s(t1) = s(t2)

PA6 s(t1) = s(t2) ⇒ t1 = t2

PA7 ⇒ t+ 0 = t

PA8 ⇒ t1 + s(t2) = s(t1 + t2)

PA9 ⇒ t · 0 = 0

PA10 ⇒ t1 · s(t2) = s(t1 · t2) + t1



The Big Idea

Our strategy to proving that PA is consistent will proceed from two ideas:

1 Sequents like ⇒ 5 + 2 = 2 + 5 should always be provable without
using quantifiers or induction. In fact, we should be able to produce
proofs of these sorts of sequents without using any operational rules.

2 Proofs with sequents containing only atomic sentences should never
have ⇒ 0 = 1 as an end-sequent.



The Big Idea

Our strategy to proving that PA is consistent will proceed from two ideas:

1 Sequents like ⇒ 5 + 2 = 2 + 5 should always be provable without
using quantifiers or induction. In fact, we should be able to produce
proofs of these sorts of sequents without using any operational rules.

2 Proofs with sequents containing only atomic sentences should never
have ⇒ 0 = 1 as an end-sequent.



The Big Idea

Our strategy to proving that PA is consistent will proceed from two ideas:

1 Sequents like ⇒ 5 + 2 = 2 + 5 should always be provable without
using quantifiers or induction. In fact, we should be able to produce
proofs of these sorts of sequents without using any operational rules.

2 Proofs with sequents containing only atomic sentences should never
have ⇒ 0 = 1 as an end-sequent.



Simple Proofs

Definition

A proof in PA is simple if the only formulas occurring in it are atomic
sentences and the only rules of inference occurring in it are structural.

In the consistency proof for PA, simple proofs will be the analogues of
CUT-free proofs:

• In LK we could not find CUT-free proofs of both φ and ¬φ and in
PA we will not be able to find a simple proof of 0 = 1.

• In LK we could transform any proof into a CUT-free proof of the
same end-sequent and in PA we will be able to transform any proof
with end-sequent containing only atomic sentences into a simple
proof of the same end-sequent.



Simple Proofs

Definition

A proof in PA is simple if the only formulas occurring in it are atomic
sentences and the only rules of inference occurring in it are structural.

In the consistency proof for PA, simple proofs will be the analogues of
CUT-free proofs:

• In LK we could not find CUT-free proofs of both φ and ¬φ and in
PA we will not be able to find a simple proof of 0 = 1.

• In LK we could transform any proof into a CUT-free proof of the
same end-sequent and in PA we will be able to transform any proof
with end-sequent containing only atomic sentences into a simple
proof of the same end-sequent.



Simple Proofs

Definition

A proof in PA is simple if the only formulas occurring in it are atomic
sentences and the only rules of inference occurring in it are structural.

In the consistency proof for PA, simple proofs will be the analogues of
CUT-free proofs:

• In LK we could not find CUT-free proofs of both φ and ¬φ and in
PA we will not be able to find a simple proof of 0 = 1.

• In LK we could transform any proof into a CUT-free proof of the
same end-sequent and in PA we will be able to transform any proof
with end-sequent containing only atomic sentences into a simple
proof of the same end-sequent.



Simple Proofs

Definition

A proof in PA is simple if the only formulas occurring in it are atomic
sentences and the only rules of inference occurring in it are structural.

In the consistency proof for PA, simple proofs will be the analogues of
CUT-free proofs:

• In LK we could not find CUT-free proofs of both φ and ¬φ and in
PA we will not be able to find a simple proof of 0 = 1.

• In LK we could transform any proof into a CUT-free proof of the
same end-sequent and in PA we will be able to transform any proof
with end-sequent containing only atomic sentences into a simple
proof of the same end-sequent.



Consistency of Simple Proofs

Definition

Define the value val(t) of a closed term t recursively as follows:

• val(0) = 0

• val(s(t)) = val(t) + 1

• val(r + t) = val(r) + val(t)

• val(r · t) = val(r) · val(t)

An atomic sentence r = t is true if val(r) = val(t), and false otherwise.
A sequent containing only atomic sentences is true if there is a false
sentence in its antecedent or a true sentence in its succedent.

Lemma

Every sequent in a simple proof is true. In particular, there is no simple
proof with end-sequent ⇒ 0 = 1.



Existence of Certain Simple Proofs

The following will be useful when removing CJ inferences from our proofs:

Lemma

Let t be a closed term and val(t) = n. Then there is a simple proof with
end-sequent ⇒ t = n.

Proof (Sketch).

Induction. Lots and lots of induction. The proof is made considerably
easier if we add as axioms to PA the sequents

r = t, u = v ⇒ r + u = t+ v and r = t, u = v ⇒ r · u = t · v.

If the terms involved in these sequents are taken to be closed, then it is
easy to verify that the sequents are true and the lemma above regarding
the consistency of simple proofs remains true.



The Almost Simple Part

Given a proof in PA with end-sequent containing only atomic sentences
there will be part of the proof that “looks like a simple proof.” This part
of the proof will contain

• The end-sequent.

• Some other stuff immediately above the end-sequent which “looks
simple.”

Our goal is to transform the proof so that this part expands to include the
entire proof. We make precise the notion of “looks like a simple proof.”



Successors and Predecessors

Definition

Let I be an inference in a proof π, φ be a formula appearing in the
conclusion of I, and ψ be a formula appearing in a premise of I. Then φ is
the successor of ψ (and ψ is a predecessor of φ) if one of the following
holds:

• Both φ and ψ are corresponding occurrences of the same formula
appearing in the side formulas of I.

• I is an operational inference with principal formula φ and auxiliary
formula ψ.

• I is either a contraction or interchange and φ and ψ are the same
formula.

• I is a CJ inference and φ and ψ are the principal and auxiliary
formulas in the succedents (antecedents), respectively.



Bundles and Boundaries

Definition

Let π be a proof and φ0, . . . , φn be a sequence of formulas appearing in
π such that φ0 has no predecessor, φi+1 is the successor of φi for i < n,
and φn has no successor. Such a sequence is called a bundle. A bundle
φ0, . . . , φn is implicit if φn is a CUT-formula and explicit otherwise. An
inference in π is implicit if its principal formula belongs to an implicit
bundle and is explicit otherwise. Lowermost implicit operational
inferences are called boundary inferences.

Note that if φ0, . . . , φn is an explicit bundle, then φn is a formula
appearing in the end-sequent of π.



The End-part of a Proof

Definition

The end-part of a proof is the smallest part of the proof such that:

1 The end-sequent belongs to the end-part.

2 If the conclusion of an inference belongs to the end-part, so do the
premises, unless the inference is a boundary inference.

In the case of proofs with end-sequents containing only atomic sentences,
all operational inferences must be implicit and so boundary inferences
turn out to be lowermost operational inferences. Thus the end-part of
such a proof “looks simple”: it contains only structural and CJ inferences.



The End-part of a Proof

Definition

The end-part of a proof is the smallest part of the proof such that:

1 The end-sequent belongs to the end-part.

2 If the conclusion of an inference belongs to the end-part, so do the
premises, unless the inference is a boundary inference.

In the case of proofs with end-sequents containing only atomic sentences,
all operational inferences must be implicit and so boundary inferences
turn out to be lowermost operational inferences. Thus the end-part of
such a proof “looks simple”: it contains only structural and CJ inferences.



The End-part of a Proof

Definition

The end-part of a proof is the smallest part of the proof such that:

1 The end-sequent belongs to the end-part.

2 If the conclusion of an inference belongs to the end-part, so do the
premises, unless the inference is a boundary inference.

In the case of proofs with end-sequents containing only atomic sentences,
all operational inferences must be implicit and so boundary inferences
turn out to be lowermost operational inferences. Thus the end-part of
such a proof “looks simple”: it contains only structural and CJ inferences.



The End-part of a Proof

Definition

The end-part of a proof is the smallest part of the proof such that:

1 The end-sequent belongs to the end-part.

2 If the conclusion of an inference belongs to the end-part, so do the
premises, unless the inference is a boundary inference.

In the case of proofs with end-sequents containing only atomic sentences,
all operational inferences must be implicit and so boundary inferences
turn out to be lowermost operational inferences. Thus the end-part of
such a proof “looks simple”: it contains only structural and CJ inferences.



Expanding the End-part

We will successively apply three different reduction steps to expand the
end-parts our proofs. These are:

1 Removal of CJ inferences

2 Removal of weakenings

3 Reduction of CUTs

The second sort of reduction is needed for technical reasons which we will
comment on later. For now we focus our attention on steps 1 and 2.



Removing CJ Inferences

Suppose π is a proof with end-sequent containing only atomic sentences
and that there is a CJ inference in the end-part of π. Then there is a
lowermost such CJ inference and we may assume that its principal
formula φ(t) is a sentence. So t is a closed term and val(t) is defined.
Suppose val(t) = n and consider the sub-proof of π ending in this
lowermost CJ inference of the end-part:

π′(a)

φ(a) ⇒ φ(s(a))
! CJ
φ(0) ⇒ φ(t)

We will replace the above sub-proof with what are essentially several
copies of the proof above the CJ inference.



Removing CJ Inferences

Consider the following proof π′′(n):

π′(0)

φ(0) ⇒ φ(1)

π′(1)

φ(1) ⇒ φ(2)
CUT

φ(0) ⇒ φ(2)

π′(3)

φ(2) ⇒ φ(3)
CUT

φ(0) ⇒ φ(3)

φ(0) ⇒ φ(n− 1)

π′(n)

φ(n− 1) ⇒ φ(n)
CUT

φ(0) ⇒ φ(n)

Since val(t) = n, there is a simple proof of ⇒ t = n and we can use this
to build a proof of φ(n) ⇒ φ(t) without CJ inferences or complex
CUTs. Taking a CUT of this with π′′(n) gives us a way to remove the CJ
inference.



Removing CJ Inferences

π′′(n)

φ(0) ⇒ φ(n) φ(n) ⇒ φ(t)
CUT

φ(0) ⇒ φ(t)

So if we replace

π′(a)

φ(a) ⇒ φ(s(a))
! CJ
φ(0) ⇒ φ(t)

with the proof just constructed, we remove a CJ inference. But what else
happens?



Removing CJ Inferences

Looking at π′′(n) again we see that we have essentially introduced n+ 1
new copies of π′(a) to our proof.

π′(0)

φ(0) ⇒ φ(1)

π′(1)

φ(1) ⇒ φ(2)
CUT

φ(0) ⇒ φ(2)

π′(3)

φ(2) ⇒ φ(3)
CUT

φ(0) ⇒ φ(3)

φ(0) ⇒ φ(n− 1)

π′(n)

φ(n− 1) ⇒ φ(n)
CUT

φ(0) ⇒ φ(n)

So any part of the end-part of π contained in π′(a) is reproduced n+ 1
times and we may end up introducing more CJ inferences to the end-part
of our proof than we remove.



Removing CJ Inferences

Definition

Let π be a proof with end-sequent containing only atomic sentences. An
induction chain in π is a sequence I0, . . . , Ik where each Ij is a CJ
inference in the end-part of π, Ij+1 occurs below Ij , no CJ inference
occurs between Ij+1 and Ij , and no CJ inference occurs below Ik. We
take m(π) to be the maximum length among induction chains in π and
o(π) to be the number of induction chains in π of length m(π).

In the procedure described above for removing CJ inferences we can
always choose to remove a CJ inference which is the last term of an
induction chain of maximal length. When we do this, any new induction
chains introduced are of length strictly shorter so either the number of
induction chains of maximal length decreases by 1, or the maximal length
of induction chains in π decreases.



Reduction of CUTs

After applying the first two reduction steps it is not difficult to show that
if our proof is not simple, then the end-part contains a complex CUT
where both CUT-formulas descend from boundary inferences. For
instance, if the CUT-formula is ¬φ, then sub-proof ending in the complex
CUT would look like the following where dashed lines indicate boundary
inferences:

π1

φ ⇒
¬R⇒ ¬φ

π′
1

⇒ ¬φ

π2

⇒ φ
¬L¬φ ⇒

π′
2

¬φ ⇒
CUT⇒



Reduction of CUTs

We replace the sub-proof above with the following:

π1

φ ⇒
¬R⇒ ¬φ

π′
1

⇒ ¬φ

π2

⇒ φ
WL¬φ ⇒ φ

π′′
2

¬φ ⇒ φ
CUT⇒ φ

π1

φ ⇒
WRφ ⇒ ¬φ

π′′
1

φ ⇒ ¬φ

π2

⇒ φ
¬L¬φ ⇒

π′
2

¬φ ⇒
CUTφ ⇒

CUT⇒

But this doesn’t look particularly helpful: we now have three CUT
inferences and only one is of lower degree than what we started with.
However, now we have brought parts of both π1 and π2 into the end-part
of our proof, thus raising the boundary and allowing us to apply our other
reduction procedures to more of the proof.



Reduction of CUTs

We replace the sub-proof above with the following:

π1

φ ⇒
¬R⇒ ¬φ

π′
1

⇒ ¬φ

π2

⇒ φ
WL¬φ ⇒ φ

π′′
2

¬φ ⇒ φ
CUT⇒ φ

π1

φ ⇒
WRφ ⇒ ¬φ

π′′
1

φ ⇒ ¬φ

π2

⇒ φ
¬L¬φ ⇒

π′
2

¬φ ⇒
CUTφ ⇒

CUT⇒

But this doesn’t look particularly helpful: we now have three CUT
inferences and only one is of lower degree than what we started with.

However, now we have brought parts of both π1 and π2 into the end-part
of our proof, thus raising the boundary and allowing us to apply our other
reduction procedures to more of the proof.



Reduction of CUTs

We replace the sub-proof above with the following:

π1

φ ⇒
¬R⇒ ¬φ

π′
1

⇒ ¬φ

π2

⇒ φ
WL¬φ ⇒ φ

π′′
2

¬φ ⇒ φ
CUT⇒ φ

π1

φ ⇒
WRφ ⇒ ¬φ

π′′
1

φ ⇒ ¬φ

π2

⇒ φ
¬L¬φ ⇒

π′
2

¬φ ⇒
CUTφ ⇒

CUT⇒

But this doesn’t look particularly helpful: we now have three CUT
inferences and only one is of lower degree than what we started with.
However, now we have brought parts of both π1 and π2 into the end-part
of our proof, thus raising the boundary and allowing us to apply our other
reduction procedures to more of the proof.



Reduction of CUTs

We replace the sub-proof above with the following:

π1

φ ⇒
¬R⇒ ¬φ

π′
1

⇒ ¬φ

π2

⇒ φ
��WL

��¬φ ⇒ φ

π′′
2

��¬φ ⇒ φ
���CUT⇒ φ

π1

φ ⇒
��WRφ ⇒��¬φ

π′′
1

φ ⇒��¬φ

π2

⇒ φ
¬L¬φ ⇒

π′
2

¬φ ⇒
���CUTφ ⇒

CUT⇒

But this doesn’t look particularly helpful: we now have three CUT
inferences and only one is of lower degree than what we started with.
However, now we have brought parts of both π1 and π2 into the end-part
of our proof, thus raising the boundary and allowing us to apply our other
reduction procedures to more of the proof.



Reduction of CUTs

We replace the sub-proof above with the following:

π2

⇒ φ
��WL

��¬φ ⇒ φ

π′′
2

��¬φ ⇒ φ
���CUT⇒ φ

π1

φ ⇒
��WRφ ⇒��¬φ

π′′
1

φ ⇒��¬φ ���CUTφ ⇒
CUT⇒

But this doesn’t look particularly helpful: we now have three CUT
inferences and only one is of lower degree than what we started with.
However, now we have brought parts of both π1 and π2 into the end-part
of our proof, thus raising the boundary and allowing us to apply our other
reduction procedures to more of the proof.



Please, Make it Stop

Once again we need to show that if we continue applying our reduction
procedures, then we will eventually reach a proof to which our reduction
procedures cannot be applied. Such a proof will be a simple proof and
our argument will be complete. We induct on the ordinal ε0:

ε0 = sup{ωn(0) : n < ω}

where ωn(α) is given by

ω0(α) = α

ωn+1(α) = ωωn(α)

for α an ordinal. So ε0 is the limit of the sequence 0, ω0, ωω0

, ωωω0

, . . .



Please, Make it Stop

Definition

Let π be a proof in PA.

1 If S is an initial sequent of π, then o(S, π) = 1.

2 If I is structural inference other than CUT in π with premise S,
then o(I, π) = o(S, π).

3 If I is an operational inference with one premise S, then
o(I, π) = o(S, π) + 1.

4 If I is an inference with two premises S, S′, then
o(I, π) = max{o(S, π), o(S′, π)}+ 1.

5 If I is a CJ inference with premise S and o(S, π) has Cantor Normal
Form ωα0 + · · ·+ ωαn , then o(I, π) = ωα0+1.

6 If S is the conclusion of inference I, and l and k are the maximum
degrees of all CUTs and CJ inferences below S and the premises of
I, respectively, then o(S, π) = ωk−l(o(I, π)).



Please, Make it Stop

Definition

Let π be a proof in PA.

1 If S is an initial sequent of π, then o(S, π) = 1.

2 If I is structural inference other than CUT in π with premise S,
then o(I, π) = o(S, π).

3 If I is an operational inference with one premise S, then
o(I, π) = o(S, π) + 1.

4 If I is an inference with two premises S, S′, then
o(I, π) = max{o(S, π), o(S′, π)}+ 1.

5 If I is a CJ inference with premise S and o(S, π) has Cantor Normal
Form ωα0 + · · ·+ ωαn , then o(I, π) = ωα0+1.

6 If S is the conclusion of inference I, and l and k are the maximum
degrees of all CUTs and CJ inferences below S and the premises of
I, respectively, then o(S, π) = ωk−l(o(I, π)).



Please, Make it Stop

Definition

Let π be a proof in PA.

1 If S is an initial sequent of π, then o(S, π) = 1.

2 If I is structural inference other than CUT in π with premise S,
then o(I, π) = o(S, π).

3 If I is an operational inference with one premise S, then
o(I, π) = o(S, π) + 1.

4 If I is an inference with two premises S, S′, then
o(I, π) = max{o(S, π), o(S′, π)}+ 1.

5 If I is a CJ inference with premise S and o(S, π) has Cantor Normal
Form ωα0 + · · ·+ ωαn , then o(I, π) = ωα0+1.

6 If S is the conclusion of inference I, and l and k are the maximum
degrees of all CUTs and CJ inferences below S and the premises of
I, respectively, then o(S, π) = ωk−l(o(I, π)).



Please, Make it Stop

Definition

Let π be a proof in PA.

1 If S is an initial sequent of π, then o(S, π) = 1.

2 If I is structural inference other than CUT in π with premise S,
then o(I, π) = o(S, π).

3 If I is an operational inference with one premise S, then
o(I, π) = o(S, π) + 1.

4 If I is an inference with two premises S, S′, then
o(I, π) = max{o(S, π), o(S′, π)}+ 1.

5 If I is a CJ inference with premise S and o(S, π) has Cantor Normal
Form ωα0 + · · ·+ ωαn , then o(I, π) = ωα0+1.

6 If S is the conclusion of inference I, and l and k are the maximum
degrees of all CUTs and CJ inferences below S and the premises of
I, respectively, then o(S, π) = ωk−l(o(I, π)).



Please, Make it Stop

Definition

Let π be a proof in PA.

1 If S is an initial sequent of π, then o(S, π) = 1.

2 If I is structural inference other than CUT in π with premise S,
then o(I, π) = o(S, π).

3 If I is an operational inference with one premise S, then
o(I, π) = o(S, π) + 1.

4 If I is an inference with two premises S, S′, then
o(I, π) = max{o(S, π), o(S′, π)}+ 1.

5 If I is a CJ inference with premise S and o(S, π) has Cantor Normal
Form ωα0 + · · ·+ ωαn , then o(I, π) = ωα0+1.

6 If S is the conclusion of inference I, and l and k are the maximum
degrees of all CUTs and CJ inferences below S and the premises of
I, respectively, then o(S, π) = ωk−l(o(I, π)).



Please, Make it Stop

Definition

Let π be a proof in PA.

1 If S is an initial sequent of π, then o(S, π) = 1.

2 If I is structural inference other than CUT in π with premise S,
then o(I, π) = o(S, π).

3 If I is an operational inference with one premise S, then
o(I, π) = o(S, π) + 1.

4 If I is an inference with two premises S, S′, then
o(I, π) = max{o(S, π), o(S′, π)}+ 1.

5 If I is a CJ inference with premise S and o(S, π) has Cantor Normal
Form ωα0 + · · ·+ ωαn , then o(I, π) = ωα0+1.

6 If S is the conclusion of inference I, and l and k are the maximum
degrees of all CUTs and CJ inferences below S and the premises of
I, respectively, then o(S, π) = ωk−l(o(I, π)).



Please, Make it Stop

Definition

Let π be a proof in PA.

1 If S is an initial sequent of π, then o(S, π) = 1.

2 If I is structural inference other than CUT in π with premise S,
then o(I, π) = o(S, π).

3 If I is an operational inference with one premise S, then
o(I, π) = o(S, π) + 1.

4 If I is an inference with two premises S, S′, then
o(I, π) = max{o(S, π), o(S′, π)}+ 1.

5 If I is a CJ inference with premise S and o(S, π) has Cantor Normal
Form ωα0 + · · ·+ ωαn , then o(I, π) = ωα0+1.

6 If S is the conclusion of inference I, and l and k are the maximum
degrees of all CUTs and CJ inferences below S and the premises of
I, respectively, then o(S, π) = ωk−l(o(I, π)).



Please, Make it Stop

For π a proof with end-sequent S we take o(π) = o(S, π). All that is left
to do now is show that whenever we apply one of our reduction
procedures, the ordinal corresponding to our proof decreases. But this is
just bookkeeping.



References

Paolo Mancosu, Sergio Galvan, and Richard Zach. An Introduction to
Proof Theory: Normalization, Cut-Elimination, and Consistency
Proofs. Oxford University Press, Oxford, 2021.


	References

