
ALGEBRA QUALIFYING EXAM, JANUARY 2019

On the first problem, only the answer will be graded. On all other problems, you will be
expected to justify all responses. Each problem is worth 20 points. Unless otherwise stated,
parts of a given problem will be worth roughly the same amount.

(1) On this problem, only the answers will be graded.
(a) Give an example of a simple ring which is not a commutative ring.
(b) Give an example a ring R, R-modules M1,M2,M3, and N and a short exact

sequence 0 → M1 → M2 → M3 → 0 such that the corresponding sequence
0← Hom(M1, N)← Hom(M2, N)← Hom(M3, N)← 0 is not exact.

(c) Let Φ be the map Z3 → Z2 given by the matrix

[
2 3 5
12 −4 8

]
. Let M be the

cokernel of Φ, which we recall is Z2/image(Φ). Compute the annihilator of M .

(2) If G is a group and x, y ∈ G, then we let 〈x, y〉 denote the subgroup of G generated
by x and y. For x ∈ G, define CycG(x) := {y ∈ G|〈x, y〉 is cyclic }.
(a) Show by example that CycG(x) need not be a subgroup of G.
(b) Let Cyc(G) =

⋂
x∈G CycG(x). Show that Cyc(G) is a subgroup of G.

(c) Show that Cyc(G) lies in the center of G.
(d) Assume now that G is finite. Show that Cyc(G) is cyclic.

(3) Let R be a commutative ring and let S ⊆ R be a multiplicatively closed subset.
(a) (12 points) Let M be an R-module. Prove that S−1M ∼= S−1R⊗R M .
(b) (8 points) Give an example of a ring R, a multiplicatively closed subset S ⊆ R

and an R-module M where S−1M is flat and nonzero, but where M is not flat.

(4) (a) Let E be the splitting field over Q of the polynomial x3 + 2x2 + 3x + 4 (which
has discriminant −200). Find Gal(E/Q).

(b) Let F be the splitting field over Q of the polynomial x3 + 4x2 + 7x + 6 (which
has discriminant −72). Find Gal(F/Q).

(c) Let E and F be as above. Find Gal(EF/Q).

(5) Let F be a field and n be a positive integer. Fix an n × n matrix S over F that is
invertible and symmetric. Writing At for the transpose of a matrix, we let

V := {n× n matrices A over F | At = SAS−1.}
Note that V is a vector space (you do not need to prove this). Find the dimension
of V in terms of n.
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Solutions to January 2019 Algebra Qualifying Exam

(1) (a) Any non-commutative division ring will work.
(b) R = Z and 0→ Z→ Z→ Z/2Z→ 0 and N = Z/2 will work.

(c) Via row and column operations, the matrix is equivalent to

[
1 0 0
0 44 0

]
so the

annihilator is (44).

(2) If x1, x2, . . . , xn ∈ G then we will write 〈x1, x2, . . . , xn〉 for the subgroup of G gener-
ated by x1, x2, . . . , xn.
(a) Let G = Z/2× Z/4 and x = (0, 2). Then (0, 1) and (1, 1) are both in CycG(x):

this is because (0, 1) + (0, 1) = (0, 2) = (1, 1) + (1, 1) and so 〈(0, 2), (0, 1)〉 =
〈(0, 1)〉 and similarly for (1, 1). But (1, 0) = (0, 1) + (1, 1) is not in CycG(x),
since 〈(0, 2), (1, 0)〉 is a group of order 4 with no element of order 4, and is thus
not cyclic.

(b) If g ∈ Cyc(G) and x ∈ G, then 〈g−1, x〉 = 〈g, x〉, which is cyclic, so g−1 ∈
Cyc(G). If also h ∈ Cyc(G), then 〈gh, x〉 is a subgroup of 〈g, h, x〉. But we claim
that 〈g, h, x, 〉 is also cyclic: this is because 〈h, x〉 is cylcic (since h ∈ Cyc(G))
and thus 〈h, x〉 = 〈y〉 for some y. It follows that 〈g, h, x〉 = 〈g, y〉 which is cyclic
because g ∈∈ Cyc(G). Therefore, 〈gh, x〉 is a subgroup of a cyclic group. So it
must also be cyclic, which shows that gh ∈ Cyc(G).

(c) Let g ∈ Cyc(G) and let x ∈ G. Since 〈g, x〉 is a cyclic, g and x must commute
and thus g lies in the center of G.

(d) Let H be any cyclic subgroup of Cyc(G) which is maximal under inclusion. (Such
a group exists since G is finite.) Then H = 〈h〉 for some h. For any g ∈ Cyc(G)
we would have that 〈g, h〉 is a cyclic subgroup of Cyc(G) containing H and thus
〈g, h〉 = H = 〈h〉. It follows that H = Cyc(G).

(3) Let R be a commutative ring and let S ⊆ R be a multiplicatively closed subset.
(a) Consider the map S−1R ×M → S−1M given by ( r

s
,m) 7→ rm

s
. We first check

that the map is R-bilinear:
• If we fix m then we must check that the map φm : S−1R→ S−1M sending

r
s
7→ rm

s
is R-linear. This follows since φm( r

s
) + φm( r

′

s′
) = rm

s
+ r′m

s′
=

rs′m+r′sm
ss′

= φm( rs
′+r′s
ss′

) = φm( r
s

+ r′

s′
) and r′φm( r

s
) = r′ · rm

s
= rr′m

s
=

φm(r′ r
s
).

• If we fix r
s

and let ψr/s : M → S−1M be given by sending m 7→ rm
s

then ψr/s(m + m′) = r(m+m′)
s

= rm
s

+ rm′

s
= ψr/s(m) + ψr/sm

′. And

r′ψr/s(m) = r′ · rm
s

= r′rm
s

= ψr/sr
′m.

Thus by the universal property of tensor products, there is a map of R-modules
S−1R ⊗R M → S−1M generated by sending r

s
⊗m 7→ rm

s
. The element 1

s
⊗m

maps to m
s

, so the map is surjective.
We must also check injectivity. Consider the element

∑n
i=1

ai
si
⊗mi in S−1R⊗RM .

Write s =
∏n

i=1 si for the common denominator and ti =
∏

j 6=i si. Then for each

i we have ai
si

= aiti
s

. Now we can rewrite
∑n

i=1
ai
si
⊗ mi =

∑n
i=1

aiti
s
⊗ mi. By
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properties of tensor products, we can rewrite this as
∑n

i=1
1
s
⊗ aitimi which is in

turn equal to 1
s
⊗
∑n

i=1 aitimi. Thus every element in S−1R⊗RM can be written

in the form 1
s
⊗m for some s ∈ S and some m ∈ M . So we now assume that

some elements 1
s
⊗m maps to zero in S−1M . This means that m

s
= 0 in S−1M

which means that there exists t ∈ S such that mt = 0. Then we have
1

s
⊗m =

t

ts
⊗m =

1

ts
⊗ tm =

1

ts
⊗ 0 = 0.

Thus the map is injective.
(b) R = Z and M = Z ⊕ Z/2 and S = {2, 22, 23, . . . }. Works. First we show that

M is not flat. A direct sum of modules is flat if and only if each summand is
flat, but Z/2 is not flat since tensoring 0→ Z→ Z→ Z/2Z→ 0 with Z/2 will
not preserve exactness. However, S−1R = Z[2−1] and S−1M = Z[2−1] and thus
S−1M is a free S−1R-module, and hence it is flat.

(4) (a) First we show the polynomial is irreducible. Since it is cubic, if it has a non-
trivial factor, it has a linear factor. it has a non-trivial factor, it has a linear
factor. By Gauss’s theorem, it then has a factorization over the integers and
thus an integral root. We check mod 3, that x = 0 gives a value of 1, and x = 1
gives a value of 1, and x = 2 gives a value of 2, and thus the equation has no
roots mod 3 and thus no integral roots. So the cubic polynomial is irreducible
and thus has Galois group either C3 or S3. Since −200 is not a square, the Galois
group is S3.

(b) We factor x3 + 4x2 + 7x + 6 = (x2 + 2x + 3)(x + 2). So F is the splitting field
of x2 + 2x+ 3, which is Q(

√
−8), as 22 − 4 · 3 = −8. Every quadratic extension

of Q has Galois group C2 over Q, and so the Galois group is C2.
(c) Note that F = Q(

√
−2), and thus F is a subfield of E, since E contains the

square root of the discriminant of x3 + 2x2 + 3x + 4, i.e. contains
√
−200 and

hence contains
√
−2. Thus, EF = E, and the Galois group is S3.

(5) We first claim that:

A ∈ V ⇐⇒ SA is symmetric.

This follows because SAS−1 = At ⇐⇒ SA = AtS. But S is symmetric so AtS =
AtSt = (SA)t. Thus A ∈ V if and only if SA = (SA)t or equivalently, A ∈ V
if and only if SA is symmetric. Let W be the vector space of n × n symmetric
matrices, which has dimension

(
n+1
2

)
. Consider the linear transformation Φ : W → V

given by M 7→ SM . Since S is invertible, the map V → W given by N 7→ S−1N
is an inverse of Φ and thus Φ is an isomorphism of vector spaces. It follows that
dimV = dimW =

(
n+1
2

)
.
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