QUALIFYING EXAM

in

ANALYSIS
 Department of Mathematics University of Wisconsin-Madison
 August 19, 2015
 Version for Math 722

Instructions: Do six of the nine questions. To facilitate grading, please use a separate packet of paper for each question. To receive credit on a problem, you must show your work and justify your conclusions.

Standard notation used on the Analysis exams:

(1) $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}$ denotes the unit disc in the complex plane.
(2) For points x and y in $\mathbb{R}^{n},|x-y|$ denotes the Euclidean distance between the points.
(3) If $E \subset \mathbb{R}^{n}$ is a Lebesgue measurable set, then $|E|$ denotes its Lebesgue measure.
(4) If μ is a positive measure on a set X, and if f is a complex valued measurable function on X, then for $1 \leq p<+\infty$,

$$
\|f\|_{p}=\left[\int_{X}|f(x)|^{p} d \mu(x)\right]^{1 / p}
$$

Two functions on X are said to be equivalent if they are equal except on a set of μ measure zero. For $1 \leq p<+\infty, L^{p}(X)=L^{p}(X, d \mu)$ is the space of equivalence classes of complex valued measurable functions such that $\|f\|_{p}<+\infty$.
(5) If μ is a positive measure on a set X, and if f is a complex valued measurable function on X, then

$$
\|f\|_{\infty}=\inf \{t>0 \mid \mu(\{x \in X| | f(x) \mid>t\})=0\}
$$

$L^{\infty}(X)=L^{\infty}(X, d \mu)$ is the space of equivalence classes of measurable, complex valued functions on X such that $\|f\|_{\infty}<+\infty$.
(6) $L^{p}\left(\mathbb{R}^{n}\right)$ and $L^{\infty}\left(\mathbb{R}^{n}\right)$ denote the spaces of equivalence classes of functions as defined in (5) and (6) where the measure $d \mu$ is Lebesgue measure.
(7) $L_{\text {loc }}^{p}\left(\mathbb{R}^{n}\right)$ is the space of equivalence classes of measurable, complex valued functions on \mathbb{R}^{n} which belong to $L^{p}(K)$ for every compact set $K \subset \subset \mathbb{R}^{n}$.
(8) If f and g are measurable functions on \mathbb{R}^{n}, the convolution $f * g$ is defined to be the function

$$
(f * g)(x)=\int_{\mathbb{R}^{n}} f(x-t) g(t) d t
$$

whenever the integral converges. Here $d t$ denotes Lebesgue measure.
(9) If T is a distribution and φ is a test function, then $\langle T, \varphi\rangle$ denotes the value of the distribution applied to the test function.
(10) A Hilbert space H is a complete separable vector space with the inner product denoted by $\langle\cdot, \cdot\rangle$.

The Doctoral Exam Committee proofreads the qualifying exams as carefully as possible. Nevertheless, this exam may contain typographical errors. If you have any doubts about the interpretation of a problem, please consult with the proctor. If you are convinced that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In any case, never interpret a problem in such a way that it becomes trivial.

Problem 1.

(a) Show that the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin \left(\frac{x}{n}\right)
$$

converges pointwise to some function f on \mathbb{R}.
(b) Is f continuous on \mathbb{R} ? Does $f^{\prime}(x)$ exist for each $x \in \mathbb{R}$?
(c) Does the series converge uniformly on \mathbb{R} ?

Problem 2. Identify all $x \in \mathbb{R}$ such that

$$
\lim _{n \rightarrow \infty} \sin (n m x)
$$

exists for some positive integer m.
Problem 3. Let a_{1}, a_{2}, \ldots be a sequence of positive real numbers and assume that

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=1
$$

(a) Show that $\lim _{n \rightarrow \infty} a_{n} n^{-1}=0$.
(b) For $b_{n}=\max \left\{a_{1}, \ldots, a_{n}\right\}$, show that $\lim _{n \rightarrow \infty} b_{n} n^{-1}=0$.
(c) Show that for $\beta \geq 0$,

$$
\lim _{n \rightarrow \infty} \frac{a_{1}^{\beta}+\cdots+a_{n}^{\beta}}{n^{\beta}}
$$

exists and equals 0 and ∞ when $\beta>1$ and $\beta<1$, respectively.
Problem 4. Let $E \subseteq \mathbb{R}$ be measurable and satisfy

$$
E+r=E
$$

for every rational number r. Show that either E or its complement has measure 0 .
Problem 5. Find all $f \in L^{2}([0, \pi])$ such that

$$
\int_{0}^{\pi}|f(x)-\sin x|^{2} d x \leq \frac{4 \pi}{9}
$$

and

$$
\int_{0}^{\pi}|f(x)-\cos x|^{2} d x \leq \frac{\pi}{9}
$$

Problem 6. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \rightarrow \mathbb{R}$ be measurable. Prove that if $1 \leq p<r<q<\infty$ and there is $C<\infty$ such that

$$
\mu(\{x:|f(x)|>\lambda\}) \leq \frac{C}{\lambda^{p}+\lambda^{q}}
$$

for every $\lambda>0$, then $f \in L^{r}(\mu)$.

Problem 7. Let

$$
f(z)=\sqrt[3]{\left(z^{2}-1\right)(2-z)}
$$

(a) Show that there is a continuous branch F of f on $\mathbb{C} \backslash[-1,2]$ such that $F(3)<0$.
(b) Evaluate $F(-3)$ and

$$
\int_{|z|=4} F(z) d z
$$

Problem 8. For $z \in \mathbb{C} \backslash[-1,1]$, let

$$
f(z)=\int_{0}^{2 \pi} \frac{1}{z+\cos \theta} d \theta
$$

(a) Evaluate $F(a)$ for all $a>1$.
(b) Evaluate $\lim _{y \rightarrow 0^{+}} F(a+i y)$ for all $a \in[-1,1]$.

Problem 9. Counting multiplicity, determine the number of zeros of

$$
f(z)=z^{4}+e^{-z}
$$

on the right half-plane $\{z \mid \operatorname{Re} z>0\}$.

