QUALIFYING EXAM

in

ANALYSIS Department of Mathematics University of Wisconsin-Madison August 19, 2015 Version for Math 725

Instructions: Do six of the nine questions. To facilitate grading, please use a separate packet of paper for each question. To receive credit on a problem, you must show your work and justify your conclusions.

Standard notation used on the Analysis exams:

- (1) $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$ denotes the unit disc in the complex plane.
- (2) For points x and y in \mathbb{R}^n , |x y| denotes the Euclidean distance between the points.
- (3) If $E \subset \mathbb{R}^n$ is a Lebesgue measurable set, then |E| denotes its Lebesgue measure.
- (4) If μ is a positive measure on a set X, and if f is a complex valued measurable function on X, then for $1 \le p < +\infty$,

$$||f||_p = \left[\int_X |f(x)|^p \, d\mu(x)\right]^{1/p}.$$

Two functions on X are said to be equivalent if they are equal except on a set of μ measure zero. For $1 \leq p < +\infty$, $L^p(X) = L^p(X, d\mu)$ is the space of equivalence classes of complex valued measurable functions such that $||f||_p < +\infty$.

(5) If μ is a positive measure on a set X, and if f is a complex valued measurable function on X, then

 $||f||_{\infty} = \inf \{t > 0 \mid \mu(\{x \in X \mid |f(x)| > t\}) = 0\}.$

 $L^{\infty}(X) = L^{\infty}(X, d\mu)$ is the space of equivalence classes of measurable, complex valued functions on X such that $||f||_{\infty} < +\infty$.

- (6) $L^p(\mathbb{R}^n)$ and $L^{\infty}(\mathbb{R}^n)$ denote the spaces of equivalence classes of functions as defined in (5) and (6) where the measure $d\mu$ is Lebesgue measure.
- (7) $L^p_{\text{loc}}(\mathbb{R}^n)$ is the space of equivalence classes of measurable, complex valued functions on \mathbb{R}^n which belong to $L^p(K)$ for every compact set $K \subset \subset \mathbb{R}^n$.
- (8) If f and g are measurable functions on \mathbb{R}^n , the convolution f * g is defined to be the function

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x - t) g(t) dt$$

whenever the integral converges. Here dt denotes Lebesgue measure.

- (9) If T is a distribution and φ is a test function, then $\langle T, \varphi \rangle$ denotes the value of the distribution applied to the test function.
- (10) A Hilbert space H is a complete separable vector space with the inner product denoted by $\langle \cdot, \cdot \rangle$.

The Doctoral Exam Committee proofreads the qualifying exams as carefully as possible. Nevertheless, this exam may contain typographical errors. If you have any doubts about the interpretation of a problem, please consult with the proctor. If you are convinced that a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In any case, never interpret a problem in such a way that it becomes trivial.

(a) Show that the series

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin\left(\frac{x}{n}\right)$$

converges pointwise to some function f on \mathbb{R} .

- (b) Is f continuous on \mathbb{R} ? Does f'(x) exist for each $x \in \mathbb{R}$?
- (c) Does the series converge uniformly on \mathbb{R} ?

Problem 2. Identify all $x \in \mathbb{R}$ such that

$$\lim_{n \to \infty} \sin(nmx)$$

exists for some positive integer m.

Problem 3. Let a_1, a_2, \ldots be a sequence of positive real numbers and assume that

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = 1.$$

- (a) Show that $\lim_{n\to\infty} a_n n^{-1} = 0$.
- (b) For $b_n = \max\{a_1, \ldots, a_n\}$, show that $\lim_{n \to \infty} b_n n^{-1} = 0$.
- (c) Show that for $\beta \geq 0$,

$$\lim_{n \to \infty} \frac{a_1^\beta + \dots + a_n^\beta}{n^\beta}$$

exists and equals 0 and ∞ when $\beta > 1$ and $\beta < 1$, respectively.

Problem 4. Let $E \subseteq \mathbb{R}$ be measurable and satisfy

$$E + r = E$$

for every rational number r. Show that either E or its complement has measure 0.

Problem 5. Find all $f \in L^2([0,\pi])$ such that

$$\int_0^{\pi} |f(x) - \sin x|^2 dx \le \frac{4\pi}{9}$$

and

$$\int_0^\pi |f(x) - \cos x|^2 dx \le \frac{\pi}{9}$$

Problem 6. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to \mathbb{R}$ be measurable. Prove that if $1 \leq p < r < q < \infty$ and there is $C < \infty$ such that

$$\mu\left(\left\{x \ : \ |f(x)| > \lambda\right\}\right) \le \frac{C}{\lambda^p + \lambda^q}$$

for every $\lambda > 0$, then $f \in L^r(\mu)$.

Problem 7. Let $p \in (1, \infty)$, and for $f \in L^p(\mathbb{R})$ define

$$Tf(x) = \int_0^1 f(x+y) \, dy.$$

- (a) Show that $||Tf||_p \leq ||f||_p$, and equality holds if and only if f = 0 almost everywhere.
- (b) Prove that the map $f \mapsto f Tf$ does not map $L^p(\mathbb{R})$ onto $L^p(\mathbb{R})$.

Problem 8. Let $\chi \in C^{\infty}(\mathbb{R})$ have a compact support and define

$$f_n(x) = n^2 \chi'(nx) \,.$$

- (a) Does f_n converge in the sense of distributions as $n \to \infty$? If so, what is the limit?
- (b) Let $p \in [1, \infty)$ and $g \in L^p(\mathbb{R})$ be such that the distributional derivative of g also lies in $L^p(\mathbb{R})$. Does $f_n * g$ converge in $L^p(\mathbb{R})$ as $n \to \infty$? If so, what is the limit?

Problem 9. Recall that $H^s(\mathbb{R}^n)$ (with $s \ge 0$) is the Sobolev space consisting of all tempered distributions g on \mathbb{R}^n for which the Fourier transform \hat{g} of g is locally integrable and satisfies

$$\int_{\mathbb{R}^n} (1+|\xi|^2)^s |\widehat{g}(\xi)|^2 d\xi < \infty.$$

Let u be a Schwartz function on \mathbb{R}^n and for $a \in \mathbb{C}$, let

$$f_a(x) = |x|^a u(x).$$

Show that if $\operatorname{Re} a > -\frac{n}{2}$ and $s \in [0, \operatorname{Re} a + \frac{n}{2})$, then $f_a \in H^s(\mathbb{R}^n)$.