UW–Madison Putnam Club April 16, 2025 – Differential Equations

- 1. Suppose $h: \mathbb{R}^2 \to \mathbb{R}$ has continuous partial derivatives and satisfies $a\partial_x h + b\partial_y h = h$ for some $a, b \in \mathbb{R}$. Prove that if *h* is bounded, it is identically zero. [Putnam 2010 A3]
- 2. Let $u \coloneqq \mathbb{R}^n \to [0, \infty)$ be twice differentiable and satisfy $\Delta u = 0$. Show that *u* is constant.
- 3. Show that there is no strictly increasing function $f \colon \mathbb{R} \to \mathbb{R}$ such that $f' = f \circ f$. [Putnam 2010 B5]
- 4. Let $x_1, \ldots, x_n \colon \mathbb{R} \to \mathbb{R}$ be differentiable functions satisfying

$$x'_{1} = a_{11}x_{1} + \ldots + a_{1n}x_{n},$$

$$x'_{2} = a_{21}x_{1} + \ldots + a_{2n}x_{n},$$

$$\vdots$$

$$x'_{n} = a_{n1}x_{1} + \ldots + a_{nn}a_{n}$$

for some constants $a_{ij} \ge 0$. Suppose $x_i(t) \to 0$ as $t \to \infty$ for all *i*. Are the functions x_1, \ldots, x_n necessarily linearly dependent? [Putnam 1995 A5]

- 5. Suppose a solution u of $\partial_t u + u \partial_x u = \partial_x^2 u$ has the form u(t, x) = h(x vt) for some smooth $h: \mathbb{R} \to \mathbb{R}$ and $v \in \mathbb{R}$. Assume the limits $h(-\infty) = a$ and $h(+\infty) = b$ exist and all derivatives of h decay to zero at infinity. Show that $v = \frac{a+b}{2}$.
- 6. Let $f(x) = e^{x^2}$. Find g such that a "calculus first-year's dream" is true: (fg)' = f'g'. [Putnam 1988 A2]
- 7. Find all differentiable functions $f: (0, \infty) \to (0, \infty)$ for which there is a positive real number *a* such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all *x* > 0. [Putnam 2009 B5]

Hints

- 2. If $\Delta u = 0$, it satisfies the "mean value property": $u(x) = \frac{1}{\operatorname{vol} B_r} \int_{B_r(x)} u(y) \, dy$ for all $x \in \mathbb{R}^n$ and all r > 0. That is, u(x) is equal to the average of u over any ball centered at x.
- 3. Play around with f^{-1} .
- 7. Differentiate and try to eliminate evaluations at a/x.