ALGEBRA QUALIFYING EXAM, AUGUST 2016

1. Let G be a group. By a maximal subgroup of G we mean a subgroup $M \neq G$ such that the only subgroups containing M are M and G.
(a) Describe all the maximal subgroups of the dihedral group of order $2 p$, where p is an odd prime. How many are there?
(b) Show that if a finite group G has only one maximal subgroup, then G is cyclic.
(c) Show that if a maximal subgroup $M \subset G$ is normal, then the index of M in G is finite and prime.
2. Let V denote a nonzero finite-dimensional vector space over the complex field \mathbb{C}. Given a linear transformation $A: V \rightarrow V$, show that the following are equivalent:
(i) There exists a linear transformation $P: V \rightarrow V$ such that $P^{2}=I$ and $A P=-P A$
(ii) There exists an invertible linear transformation $P: V \rightarrow V$ such that $A P=$ $-P A$;
(iii) There exists a direct sum decomposition $V=V_{1} \oplus V_{2}$ such that $A V_{1} \subseteq V_{2}$ and $A V_{2} \subseteq V_{1}$.
3. Let R be the subring of $\mathbb{C}[x, y]$ consisting of the polynomials $P(x, y)$ such that $P(x, y)=P(y, x)$.
(a) Show that R is generated as a \mathbb{C}-algebra by $x+y$ and $x y$.
(b) Show that the map $\mathbb{C}[u, v] \rightarrow R$ sending u to $x+y$ and v to $x y$ is an isomorphism.
(c) Let S be the subring of $\mathbb{C}[x, y]$ consisting of the polynomials $P(x, y)$ such that $P(x, y)=P(-x,-y)$. Can S be generated as a \mathbb{C}-algebra by two polynomials? Either give two generators, or prove that S is not generated by 2 polynomials.
4. Let R be a commutative ring. A prime ideal $\mathfrak{p} \subset R$ is called minimal if $\mathfrak{q} \subseteq \mathfrak{p}$ for a prime ideal \mathfrak{q} implies that $\mathfrak{q}=\mathfrak{p}$.
(a) Determine the minimal primes of $R=k[x, y] /(x y)$, where k is a field.
(b) Prove that if there exists a surjective map of R-modules $R^{m} \rightarrow R^{n}$ for positive integers m and n then $m \geq n$.
(c) Assume that R has no nilpotents. Prove that if there exists an injective map of R-modules $R^{m} \rightarrow R^{n}$ then $m \leq n$. Hint: show that under these assumptions, $R_{\mathfrak{p}}$ is a field when \mathfrak{p} is minimal. You may use without proof that minimal primes exist in any commutative ring.
5. Put $\alpha:=e^{\frac{2 \pi \sqrt{-1}}{7}}$, and consider the field $K:=\mathbb{Q}(\alpha)$. Find an element $x \in K$ such that $[\mathbb{Q}(x): \mathbb{Q}]=2$. (Proving that such x exists would earn you partial credit; for full credit, express x explicitly as a polynomial in α, such as $42 \alpha^{3}-1337 \alpha^{5}$.)
