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Topological Classification of G-Bundles

For this section, all maps are continuous and taken up to
homotopy. Let X be a compact connected orientable surface and
G a connected topological group.

Let xp € X be a point, D a small disc containing xg,

D* :=D\ {x}, X*:= X\ {x0}. Let Ms(X) be the set of
G-bundles on X. Denote Lg :={g: D* — G}, Trivx~ := {f :
X* — G}, Trivp:={h:D — G}. Then

M (X) = Trivx«\Lg/ Trivp.

12

Mg(X) ~m1(G).




A Topological Lemma

The proof relies on the following lemma, which can be seen as an
analog of the Poincaré lemma.

Lemma (Homotopy Invariance)

Let Y be a sufficiently nice topological space (e.g. locally compact
Hausdorff second countable). Let E — Y x [0,1] be a principal
G-bundle. Then the restrictions Eg — Y x {0} and E; — Y x {1}
are isomorphic.

For an idea of the proof, one first claims there is an open cover
{Uq4} of Y and a finite collection of open intervals {/} such that
E is trivial over U, X Iy where {/;} cover [0,1]. Then one uses a
partition of unity argument to glue the transition functions
together to get the required identification.



Proof Sketch of Theorem

@ Recall that a G-bundle F on X is determined by gluing over
an open cover. Take the cover {X*, D}.

o Claim that a G-bundle on D or X* is trivial. The lemma can
show this for D, and reduces the case of X* to a wedge of
circles; in this case contractibility of the universal cover and
connectedness of G imply the result.

@ Thus, the class of the bundle F is determined by a cocycle
over D*. Lg(X) precisely parametrizes this set.

@ But there is a redundancy given by changing trivializations
over D, X*. This gives the double quotient as in the theorem.

This double coset description of M g(X) will appear again later in
the algebraic context, in Weil's uniformization theorem.




Proof Sketch of Corollary

@ Let ¢ be the generator of 71(D*) and consider the map
[g: D" — G] — g(6) € m1(G).

e To prove: it is well-defined on Trivx«\Lg/ Trivp (i.e. that
changing trivializations defines the same map) and that it is
injective on Trivx«\Lg/ Trivp.

@ h: D — G restricted to D* is homotopically trivial. For
f: X* — G, observe that D* < X* lies in [m1(X*), m1(X*)]
(it gets trivialized by the 2-cell of X); hence acting by Trivx«
changes g by an element of [71(G), m1(G)] = id because
m1(G) is abelian.

e For injectivity, observe that g.(d) = id implies g extends to D.



Relevance to Bung(X)

For S any space, the topological classification gives mo(Bung(S)).
For intuition, view Bung(S) = Maps(S — BG). Two maps are
connected exactly when they are homotopic, giving the
interpretation. Thus, returning to X a compact Riemann surface,
specifying a connected component of Bung(X) amounts to fixing
an element of 71(G).

Example: G = GL,(C), SL,(C), PGL,(C).

Identifying GL,-bundles with vector bundles of rank n, we obtain
that connected components of Bun,(X) are identified with Z,
corresponding to a choice of degree.

SL,, is simply connected so the moduli space is connected.

PGL, has an Z/nZ-cover by SL,, so “degree” is Z/nZ-valued.




Example: Bung;,(X)

Let X be a smooth projective curve.

Buner, (X) = [ (Pic?(X) x BGp).
dez

.

Beginning of proof: Definitions.

Using line bundles, recall:
Bung,(X)(S) = {S-flat line bundles on X x S}

BGm(S) = {line bundles on S}
Pic?(X)(S) = {S-flat line bundles of degree d on X x S}/Pic(S).




Bung,(X): More Definitions

Fix S a C-scheme and suppose T is a covering of S.

@ Previous slide defined objects. Observe that morphisms
behave as follows:

@ For u,v € BGy(S), Isom(u,v)(T) =T(T,07)* ~Gn(T)
(an isomorphism of line bundles is a section of G,).

e For u,v € Bung,(X)(S), Isom(u, v)(T) is isomorphisms of
line bundles again. Thus Isom(u, v)(T) ~ Gn,(T).

@ Pic?(X) only has identity morphisms.



Bung,(X): Conclusion of Proof

Define a map

[ (Pic?(X)(S) x BGm(S)) — Bungi,(X)(S)
dez

as follows. First, choose a representative £ € Bung, (X)(S) of
each isomorphism class L € Pic?(X)(S), for all d. Then on
objects, define:

(LM)y— LM
and on morphisms:
(id,7) — 1.

It is clearly an isomorphism on morphisms. On objects, there is a
bijection between the L and the £, and {£L® M, M € Pic(S)} is
the equivalence class of £. [J



Some Further Remarks on Bung,(X)

@ The map above defines an action of the objects of BG,, on
Bungy,(X) over [ Pic?(X). This makes Bung,(X) a
(trivial) gerbe over [ [ Pic?(X), banded by G,. More
generally, for A is a sheaf of abelian groups, a gerbe banded
by Ais a map X — Y of stacks locally looks like the trivial
gerbe U x BA — U.

@ Bung,(X) is almost a scheme — we don't need stacks to
make sense of it! This is because the automorphism groups of
line bundles are well controlled.

@ In general, imposing a stability condition can isolate substacks
of Bung(X) that are similarly close to schemes (precisely, they
are gerbes over BGp,).



Vector Bundles on (P!)

With the aid of the following theorem, we can make the structure
of GL,-bundles on P! reasonably explicit:

Theorem (Grothendieck)

For any vector bundle F on P!, there is a unique (though
non-canonical) splitting

F= 6’79 O()\,')mi
i=1

where \; are decreasing integers.

There is an elementary proof via linear algebra and a
cohomological one.



Example: Bung,(P!)

There is an action of Bung, (P*) =[] BGm on Bungi,(P') by
tensoring with a family of line bundles. This gives an isomorphism
of the degree-n component with the degree-n 4+ 2d component, so
it is sufficient to understand degrees 0, 1. We consider degree 0 for
convenience: Denote this space Buna o(P?).

Using Grothendieck’s theorem, the isomorphism classes of C-points
of Bunpo(P!) are in bijection with Z>g via

m € Zso — O(m) & O(—m).

This is actually the same as Bunsy, (P?)!




Buny o(P'): Automorphisms of C-points

First, consider
End(O(m) ® O(—m)) ~ T (P!, 0(2m) & 092 & O(—2m)).

We want the everywhere-invertible sections. For m = 0, this is
clearly a copy of GLs.

For m > 0, observe that O(—2m) has no global sections and that
any global section of O(2m) has zeros. Writing our
endomorphisms as matrices, we see that they take the form

[g Z} with a,d € T(P!,0), b e [(P!,0(2m))

where b can be 0. Thus a and d cannot be 0 but b can be any
section, so the automorphism group is (C*)*2 x C2m+1,



Bunyo(PP'): Extensions and Stackiness

The existence of non-trivial extensions of line bundles reveals the
fundamentally “stacky” nature of Bunyo(P!). Recall Ext!(F,G) is
the vector space of equivalence classes of extensions

0=-G—=&—=F—=0,
with O element representing F & G.
Ext'(O(m), O(—m)) ~ HY{(O(=2m)) ~ H*(O(2m — 2)),

which has dimension 2m — 1 for m # 0. It can be shown that this
implies existence of families on A x P! where the fiber over 0 is
O(m) & O(—m) but all other fibers are isomorphic to a different
isomorphism class.



Bunyo(P'): “Stacky” Families of Extensions

A rank-2 vector bundle on P! is equivalent to a 2 x 2 transition
matrix o over C[t, t~!]. This can be put canonically in upper
triangular form, with splitting coming from reducing the matrix to
diagonal. Consider the family corresponding to the matrices

t=m oA
0 7

If A\ =0, it splits as O(—m) & O(m); if A # 0, we get O @ O.

This shows that O @& O degenerates into all isomorphism classes.




Further Remarks

@ We have ignored automorphisms of the base curve in thinking
about these spaces. This does not become an issue if we fix a
base curve, but if we want to think about these moduli spaces
in families of curves, it would become relevant. This would
amount to thinking about vector bundles on Mg, the moduli
stack of genus g curves!

o P! is very special — the structure of vector bundles is both
reasonably explicit and gives rise to some “discreteness” on
the level of C-points. Already for elliptic curves, the structure
is much more involved.

@ However, the fact that these stacks represent functors whose
section categories have extra structure allow us to say a lot
about the structure of sheaves and cohomology on them, with
connections to number theory, PDE, and physics.



Looking Ahead

@ Next time, we will see a presentation of Bung(X) as an
algebraic stack, giving us more tools to study its geometry.

@ This will be deeply connected to the
differential-geometric/physics and arithmetic perspective on
these spaces, which we will hopefully discuss — see
Atiyah-Bott's 1982 paper “The Yang-Mills Equations on a
Riemann Surface” and Harder-Narasimhan's 1975 paper “On
the cohomology groups of Moduli Spaces of Vector Bundles
on Curves”.



Thank you!



