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Topological Classification of G -Bundles

For this section, all maps are continuous and taken up to
homotopy. Let X be a compact connected orientable surface and
G a connected topological group.

Theorem

Let x0 ∈ X be a point, D a small disc containing x0,
D∗ := D \ {x0}, X ∗ := X \ {x0}. Let MG (X ) be the set of
G -bundles on X . Denote LG := {g : D∗ → G}, TrivX∗ := {f :
X ∗ → G}, TrivD := {h : D → G}. Then

MG (X ) ≃ TrivX∗\LG/TrivD .

Corollary

MG (X ) ≃ π1(G ).



A Topological Lemma

The proof relies on the following lemma, which can be seen as an
analog of the Poincaré lemma.

Lemma (Homotopy Invariance)

Let Y be a sufficiently nice topological space (e.g. locally compact
Hausdorff second countable). Let E → Y × [0, 1] be a principal
G -bundle. Then the restrictions E0 → Y × {0} and E1 → Y × {1}
are isomorphic.

For an idea of the proof, one first claims there is an open cover
{Uα} of Y and a finite collection of open intervals {Ik} such that
E is trivial over Uα × Ik where {Ik} cover [0, 1]. Then one uses a
partition of unity argument to glue the transition functions
together to get the required identification.



Proof Sketch of Theorem

Recall that a G -bundle F on X is determined by gluing over
an open cover. Take the cover {X ∗,D}.
Claim that a G -bundle on D or X ∗ is trivial. The lemma can
show this for D, and reduces the case of X ∗ to a wedge of
circles; in this case contractibility of the universal cover and
connectedness of G imply the result.

Thus, the class of the bundle F is determined by a cocycle
over D∗. LG (X ) precisely parametrizes this set.

But there is a redundancy given by changing trivializations
over D,X ∗. This gives the double quotient as in the theorem.

Remark

This double coset description of MG (X ) will appear again later in
the algebraic context, in Weil’s uniformization theorem.



Proof Sketch of Corollary

Let δ be the generator of π1(D
∗) and consider the map

[g : D∗ → G ] 7→ g∗(δ) ∈ π1(G ).

To prove: it is well-defined on TrivX∗\LG/TrivD (i.e. that
changing trivializations defines the same map) and that it is
injective on TrivX∗\LG/TrivD .
h : D → G restricted to D∗ is homotopically trivial. For
f : X ∗ → G , observe that D∗ ↪→ X ∗ lies in [π1(X

∗), π1(X
∗)]

(it gets trivialized by the 2-cell of X ); hence acting by TrivX∗

changes g by an element of [π1(G ), π1(G )] = id because
π1(G ) is abelian.

For injectivity, observe that g∗(δ) = id implies g extends to D.



Relevance to BunG (X )

For S any space, the topological classification gives π0(BunG (S)).
For intuition, view BunG (S) = Maps(S → BG ). Two maps are
connected exactly when they are homotopic, giving the
interpretation. Thus, returning to X a compact Riemann surface,
specifying a connected component of BunG (X ) amounts to fixing
an element of π1(G ).

Example: G = GLn(C), SLn(C),PGLn(C).
Identifying GLn-bundles with vector bundles of rank n, we obtain
that connected components of Bunn(X ) are identified with Z,
corresponding to a choice of degree.
SLn is simply connected so the moduli space is connected.
PGLn has an Z/nZ-cover by SLn, so “degree” is Z/nZ-valued.



Example: BunGL1(X )

Let X be a smooth projective curve.

Theorem

BunGL1(X ) ∼=
∐
d∈Z

(Picd(X )× BGm).

Beginning of proof: Definitions.

Using line bundles, recall:

BunGL1(X )(S) = {S-flat line bundles on X × S}

BGm(S) = {line bundles on S}

Picd(X )(S) = {S-flat line bundles of degree d on X × S}/Pic(S).



BunGL1(X ): More Definitions

Fix S a C-scheme and suppose T is a covering of S .

Previous slide defined objects. Observe that morphisms
behave as follows:

For u, v ∈ BGm(S), Isom(u, v)(T ) = Γ(T ,OT )
× ≃ Gm(T )

(an isomorphism of line bundles is a section of Gm).

For u, v ∈ BunGL1(X )(S), Isom(u, v)(T ) is isomorphisms of
line bundles again. Thus Isom(u, v)(T ) ≃ Gm(T ).

Picd(X ) only has identity morphisms.



BunGL1(X ): Conclusion of Proof

Define a map∐
d∈Z

(Picd(X )(S)× BGm(S)) → BunGL1(X )(S)

as follows. First, choose a representative L ∈ BunGL1(X )(S) of
each isomorphism class L ∈ Picd(X )(S), for all d . Then on
objects, define:

(L,M) 7→ L ⊗M

and on morphisms:
(id , τ) 7→ τ.

It is clearly an isomorphism on morphisms. On objects, there is a
bijection between the L and the L, and {L ⊗M,M ∈ Pic(S)} is
the equivalence class of L. □



Some Further Remarks on BunGL1(X )

The map above defines an action of the objects of BGm on
BunGL1(X ) over

∐
Picd(X ). This makes BunGL1(X ) a

(trivial) gerbe over
∐

Picd(X ), banded by Gm. More
generally, for A is a sheaf of abelian groups, a gerbe banded
by A is a map X → Y of stacks locally looks like the trivial
gerbe U × BA → U.

BunGL1(X ) is almost a scheme – we don’t need stacks to
make sense of it! This is because the automorphism groups of
line bundles are well controlled.

In general, imposing a stability condition can isolate substacks
of BunG (X ) that are similarly close to schemes (precisely, they
are gerbes over BGm).



Vector Bundles on (P1)

With the aid of the following theorem, we can make the structure
of GLn-bundles on P1 reasonably explicit:

Theorem (Grothendieck)

For any vector bundle F on P1, there is a unique (though
non-canonical) splitting

F ∼=
n⊕

i=1

O(λi )
mi

where λi are decreasing integers.

There is an elementary proof via linear algebra and a
cohomological one.



Example: BunGL2(P1)

There is an action of BunGL1(P1) ∼=
∐

d∈Z BGm on BunGL2(P1) by
tensoring with a family of line bundles. This gives an isomorphism
of the degree-n component with the degree-n + 2d component, so
it is sufficient to understand degrees 0, 1. We consider degree 0 for
convenience: Denote this space Bun2,0(P1).
Using Grothendieck’s theorem, the isomorphism classes of C-points
of Bun2,0(P1) are in bijection with Z≥0 via

m ∈ Z≥0 7→ O(m)⊕O(−m).

Remark.

This is actually the same as BunSL2(P1)!



Bun2,0(P1): Automorphisms of C-points

First, consider

End(O(m)⊕O(−m)) ≃ Γ(P1,O(2m)⊕O⊕2 ⊕O(−2m)).

We want the everywhere-invertible sections. For m = 0, this is
clearly a copy of GL2.
For m > 0, observe that O(−2m) has no global sections and that
any global section of O(2m) has zeros. Writing our
endomorphisms as matrices, we see that they take the form[

a b
0 d

]
with a, d ∈ Γ(P1,O), b ∈ Γ(P1,O(2m))

where b can be 0. Thus a and d cannot be 0 but b can be any
section, so the automorphism group is (C∗)×2 ⋉C2m+1.



Bun2,0(P1): Extensions and Stackiness

The existence of non-trivial extensions of line bundles reveals the
fundamentally “stacky” nature of Bun2,0(P1). Recall Ext1(F ,G) is
the vector space of equivalence classes of extensions

0 → G → E → F → 0,

with 0 element representing F ⊕ G.

Ext1(O(m),O(−m)) ≃ H1(O(−2m)) ≃ H0(O(2m − 2)),

which has dimension 2m − 1 for m ̸= 0. It can be shown that this
implies existence of families on A1 × P1 where the fiber over 0 is
O(m)⊕O(−m) but all other fibers are isomorphic to a different
isomorphism class.



Bun2,0(P1): “Stacky” Families of Extensions

Example.

A rank-2 vector bundle on P1 is equivalent to a 2× 2 transition
matrix σ over C[t, t−1]. This can be put canonically in upper
triangular form, with splitting coming from reducing the matrix to
diagonal. Consider the family corresponding to the matrices[

t−m λ
0 tm

]
If λ = 0, it splits as O(−m)⊕O(m); if λ ̸= 0, we get O ⊕O.

Remark.

This shows that O ⊕O degenerates into all isomorphism classes.



Further Remarks

We have ignored automorphisms of the base curve in thinking
about these spaces. This does not become an issue if we fix a
base curve, but if we want to think about these moduli spaces
in families of curves, it would become relevant. This would
amount to thinking about vector bundles on Mg , the moduli
stack of genus g curves!

P1 is very special – the structure of vector bundles is both
reasonably explicit and gives rise to some “discreteness” on
the level of C-points. Already for elliptic curves, the structure
is much more involved.

However, the fact that these stacks represent functors whose
section categories have extra structure allow us to say a lot
about the structure of sheaves and cohomology on them, with
connections to number theory, PDE, and physics.



Looking Ahead

Next time, we will see a presentation of BunG (X ) as an
algebraic stack, giving us more tools to study its geometry.

This will be deeply connected to the
differential-geometric/physics and arithmetic perspective on
these spaces, which we will hopefully discuss – see
Atiyah-Bott’s 1982 paper “The Yang-Mills Equations on a
Riemann Surface” and Harder-Narasimhan’s 1975 paper “On
the cohomology groups of Moduli Spaces of Vector Bundles
on Curves”.



Thank you!


