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1 Let S be the smallest set of positive integers such that

(a) 2 is in S,

(b) n is in S whenever n2 is in S, and

(c) (n+ 5)2 is in S whenever n is in S.

Which positive integers are not in S?

(The set S is “smallest” in the sense that S is contained in any other such set.)

2 Let Q0(x) = 1, Q1(x) = x, and

Qn(x) =
(Qn�1(x))2 � 1

Qn�2(x)

for all n � 2. Show that, whenever n is a positive integer, Qn(x) is equal to a polynomial
with integer coe�cients.

3 Let a and b be real numbers with a < b, and let f and g be continuous functions from
[a, b] to (0,1) such that

R b
a f(x) dx =

R b
a g(x) dx but f 6= g. For every positive integer n,

define

In =

Z b

a

(f(x))n+1

(g(x))n
dx.

Show that I1, I2, I3, . . . is an increasing sequence with limn!1 In = 1.

4 A class with 2N students took a quiz, on which the possible scores were 0, 1, . . . , 10. Each
of these scores occurred at least once, and the average score was exactly 7.4. Show that
the class can be divided into two groups of N students in such a way that the average
score for each group was exactly 7.4.

5 Each of the integers from 1 to n is written on a separate card, and then the cards are
combined into a deck and shu✏ed. Three players, A, B, and C, take turns in the order
A,B,C,A, . . . choosing one card at random from the deck. (Each card in the deck is
equally likely to be chosen.) After a card is chosen, that card and all higher-numbered
cards are removed from the deck, and the remaining cards are reshu✏ed before the next
turn. Play continues until one of the three players wins the game by drawing the card
numbered 1.

Show that for each of the three players, there are arbitrarily large values of n for which
that player has the highest probability among the three players of winning the game.

6 The 30 edges of a regular icosahedron are distinguished by labeling them 1, 2, . . . , 30.
How many di↵erent ways are there to paint each edge red, white, or blue such that
each of the 20 triangular faces of the icosahedron has two edges of the same color and a
third edge of a di↵erent color? [Note: the top matter on each exam paper included the
Mathematical Association of America, which is itself an icosahedron.]



7 Let L1 and L2 be distinct lines in the plane. Prove that L1 and L2 intersect if and only
if, for every real number � 6= 0 and every point P not on L1 or L2, there exist points A1

on L1 and A2 on L2 such that
��!
PA2 = �

��!
PA1.

8 Suppose that a positive integer N can be expressed as the sum of k consecutive positive
integers

N = a+ (a+ 1) + (a+ 2) + · · ·+ (a+ k � 1)

for k = 2017 but for no other values of k > 1. Considering all positive integers N

with this property, what is the smallest positive integer a that occurs in any of these
expressions?

9 Suppose that f(x) =
P1

i=0 cix
i is a power series for which each coe�cient ci is 0 or 1.

Show that if f(2/3) = 3/2, then f(1/2) must be irrational.

10 Evaluate the sum

1X

k=0

✓
3 · ln(4k + 2)

4k + 2
� ln(4k + 3)

4k + 3
� ln(4k + 4)

4k + 4
� ln(4k + 5)

4k + 5

◆

= 3 · ln 2
2

� ln 3

3
� ln 4

4
� ln 5

5
+ 3 · ln 6

6
� ln 7

7

� ln 8

8
� ln 9

9
+ 3 · ln 10

10
� · · · .

(As usual, lnx denotes the natural logarithm of x.)

11 A line in the plane of a triangle T is called an equalizer if it divides T into two regions
having equal area and equal perimeter. Find positive integers a > b > c, with a as small
as possible, such that there exists a triangle with side lengths a, b, c that has exactly two
distinct equalizers.

12 Find the number of ordered 64-tuples (x0, x1, . . . , x63) such that x0, x1, . . . , x63 are dis-
tinct elements of {1, 2, . . . , 2017} and

x0 + x1 + 2x2 + 3x3 + · · ·+ 63x63

is divisible by 2017.



1 We claim that the positive integers not in S are 1 and all multiples of 5. If S consists
of all other natural numbers, then S satisfies the given conditions: note that the only
perfect squares not in S are 1 and numbers of the form (5k)2 for some positive integer
k, and it readily follows that both (b) and (c) hold.

Now suppose that T is another set of positive integers satisfying (a), (b), and (c). Note
from (b) and (c) that if n 2 T then n+ 5 2 T , and so T satisfies the following property:

(d) if n 2 T , then n+ 5k 2 T for all k � 0.

The following must then be in T , with implications labeled by conditions (b) through
(d):

2
c) 49

c) 542
d) 562

b) 56
d) 121

b) 11

11
d) 16

b) 4
d) 9

b) 3

16
d) 36

b) 6

Since 2, 3, 4, 6 2 T , by (d) S ✓ T , and so S is smallest.

2 First solution. Define Pn(x) for P0(x) = 1, P1(x) = x, and Pn(x) = xPn�1(x) �
Pn�2(x). We claim that Pn(x) = Qn(x) for all n � 0; since Pn(x) clearly is a polynomial
with integer coe�cients for all n, this will imply the desired result.

Since {Pn} and {Qn} are uniquely determined by their respective recurrence relations
and the initial conditions P0, P1 or Q0, Q1, it su�ces to check that {Pn} satisfies the
same recurrence as Q: that is, (Pn�1(x))2 � Pn(x)Pn�2(x) = 1 for all n � 2. Here is one
proof of this: for n � 1, define the 2⇥ 2 matrices

Mn =

✓
Pn�1(x) Pn(x)
Pn�2(x) Pn�1(x)

◆
, T =

✓
x �1
1 0

◆

with P�1(x) = 0 (this value being consistent with the recurrence). Then det(T ) = 1 and
TMn = Mn+1, so by induction on n we have

(Pn�1(x))
2 � Pn(x)Pn�2(x) = det(Mn) = det(M1) = 1.

Remark: A similar argument shows that any second-order linear recurrent sequence
also satisfies a quadratic second-order recurrence relation. A familiar example is the
identity Fn�1Fn+1�F

2
n = (�1)n for Fn the n-th Fibonacci number. More examples come

from various classes of orthogonal polynomials, including the Chebyshev polynomials
mentioned below.

Second solution. We establish directly that Qn(x) = xQn�1(x)�Qn�2(x), which again
su�ces. From the equation

1 = Qn�1(x)
2 �Qn(x)Qn�2(x) = Qn(x)

2 �Qn+1(x)Qn�1(x)

we deduce that

Qn�1(x)(Qn�1(x) +Qn+1(x)) = Qn(x)(Qn(x) +Qn�2(x)).



Since deg(Qn(x)) = n by an obvious induction, the polynomials Qn(x) are all nonzero.
We may thus rewrite the previous equation as

Qn+1(x) +Qn�1(x)

Qn(x)
=

Qn(x) +Qn�2(x)

Qn�1(x)
,

meaning that the rational functions Qn(x)+Qn�2(x)
Qn�1(x)

are all equal to a constant value. By

taking n = 2 and computing from the definition that Q2(x) = x
2�1, we find the constant

value to be x; this yields the desired recurrence.

Remark: By induction, one may also obtain the explicit formula

Qn(x) =

bn/2cX

k=0

(�1)k
✓
n� k

k

◆
x
n�2k

.

Remark: In light of the explicit formula for Qn(x), Karl Mahlburg suggests the following
bijective interpretation of the identity Qn�1(x)2 �Qn(x)Qn�2(x) = 1. Consider the set
Cn of integer compositions of n with all parts 1 or 2; these are ordered tuples (c1, . . . , ck)
such that c1 + · · · + ck = n and ci 2 {1, 2} for all i. For a given composition c, let o(c)
and d(c) denote the number of 1’s and 2’s, respectively. Define the generating function

Rn(x) =
X

c2Cn

x
o(c);

then Rn(x) =
P

j

�n�j
j

�
x
n�2j , so that Qn(x) = i

�n/2
Rn(ix). (The polynomials Rn(x) are

sometimes called Fibonacci polynomials ; they satisfy Rn(1) = Fn. This interpretation of
Fn as the cardinality of Cn first arose in the study of Sanskrit prosody, specifically the
analysis of a line of verse as a sequence of long and short syllables, at least 500 years
prior to the work of Fibonacci.)

The original identity is equivalent to the identity

Rn+1(x)Rn�1(x)�Rn(x)
2 = (�1)n�1

.

This follows because if we identify the composition c with a tiling of a 1⇥n rectangle by
1 ⇥ 1 squares and 1 ⇥ 2 dominoes, it is almost a bijection to place two tilings of length
n on top of each other, o↵set by one square, and hinge at the first possible point (which
is the first square in either). This only fails when both tilings are all dominoes, which
gives the term (�1)n�1.

Remark: This problem appeared on the 2012 India National Math Olympiad; see An-
other problem based on the same idea is problem A2 from the 1993 Putnam.

3 First solution. Extend the definition of In to n = 0, so that I0 =
R b
a f(x) dx > 0. SinceR b

a (f(x)� g(x)) dx = 0, we have

I1 � I0 =

Z b

a

f(x)

g(x)
(f(x)� g(x)) dx

=

Z b

a

(f(x)� g(x))2

g(x)
dx > 0,



where the inequality follows from the fact that the integrand is a nonnegative continuous
function on [a, b] that is not identically 0. Now for n � 0, the Cauchy–Schwarz inequality
gives

InIn+2 =

✓Z b

a

(f(x))n+1

(g(x))n
dx

◆✓Z b

a

(f(x))n+3

(g(x))n+2
dx

◆


✓Z b

a

(f(x))n+2

(g(x))n+1
dx

◆2

= I
2
n+1.

It follows that the sequence {In+1/In}1n=0 is nondecreasing. Since I1/I0 > 1, this implies
that In+1 > In for all n; also, In/I0 =

Qn�1
k=0(Ik+1/Ik) � (I1/I0)n, and so limn!1 In = 1

since I1/I0 > 1 and I0 > 0.

Remark: Noam Elkies suggests the following variant of the previous solution, which
eliminates the need to separately check that I1 > I0. First, the proof that InIn+2 � I

2
n+1

applies also for n = �1 under the convention that I�1 =
R b
a g(x) dx (as in the fourth

solution below). Second, this equality must be strict for each n � �1: otherwise, the
equality condition in Cauchy–Schwarz would imply that g(x) = cf(x) identically for

some c > 0, and the equality
R b
a f(x) dx =

R b
a g(x) dx would then force c = 1, contrary to

assumption. Consequently, the sequence In+1/In is strictly increasing; since I0/I�1 = 1,
it follows that for n � 0, we again have In+1/In � I1/I0 > 1 and so on.

Second solution. (from Art of Problem Solving, user MSTang) Since
R b
a (f(x)�g(x)) dx =

0, we have

In+1 � In =

Z b

a

✓
(f(x))n+2

(g(x))n+1
� (f(x))n+1

(g(x))n

◆
dx

=

Z b

a

(f(x))n+1

(g(x))n+1
(f(x)� g(x)) dx

=

Z b

a

✓
(f(x))n+1

(g(x))n+1
� 1

◆
(f(x)� g(x)) dx

=

Z b

a

(f(x)� g(x))2((f(x))n + · · ·+ g(x)n)

(g(x))n+1
dx.

The integrand is continuous, nonnegative, and not identically zero; hence In+1 � In > 0.

To prove that limn!1 In = 1, note that we cannot have f(x)  g(x) identically, as then

the equality
R b
a f(x) dx =

R b
a g(x) dx would imply f(x) = g(x) identically. That is, there

exists some t 2 [a, b] such that f(t) > g(t). By continuity, there exist a quantity c > 1
and an interval J = [t0, t1] in [a, b] such that f(x) � cg(x) for all x 2 J . We then have

In �
Z t1

t0

(f(x))n+1

(g(x))n
dx � c

n
Z t1

t0

f(x) dx;

since f(x) > 0 everywhere, we have
R t1
t0

f(x) dx > 0 and hence In is bounded below by a
quantity which tends to 1.

Remark: One can also give a variation of the second half of the solution which shows
directly that In+1� In � c

n
d for some c > 1, d > 0, thus proving both assertions at once.



Third solution. (from David Savitt, via Art of Problem Solving) Extend the definition
of In to all real n, and note that

I�1 =

Z b

a
g(x) dx =

Z b

a
f(x) dx = I0.

By writing

In =

Z b

a
exp((n+ 1) log f(x)� n log g(x)) dx,

we see that the integrand is a strictly convex function of n, as then is In. It follows that
In is strictly increasing and unbounded for n � 1.

Fourth solution. (by David Rusin) Again, extend the definition of In to n = �1. Now
note that for n � 0 and x 2 [a, b], we have

(f(x)� g(x))

 ✓
f(x)

g(x)

◆n+1

�
✓
f(x)

g(x)

◆n
!

� 0

because both factors have the same sign (depending on the comparison between f(x)
and g(x)); moreover, equality only occurs when f(x) = g(x). Since f and g are not
identically equal, we deduce that

In+1 � In > In � In�1

and so in particular
In+1 � In � I1 � I0 > I0 � I�1 = 0.

This proves both claims.

Remark: This problem appeared in 2005 on an undergraduate math olympiad in Brazil.
See

4 First solution. Let a1, . . . , a2N be the scores in nondecreasing order, and define the sums
si =

Pi+N
j=i+1 ai for i = 0, . . . , N . Then s0  · · ·  sN and s0 + sN =

P2N
j=1 ai = 7.4(2N),

so s0  7.4N  sN . Let i be the largest index for which si  7.4N ; note that we cannot
have i = N , as otherwise s0 = sN = 7.4N and hence a1 = · · · = a2N = 7.4, contradiction.
Then 7.4N � si < si+1 � si = ai+N+1 � ai and so

ai < si + ai+N+1 � 7.4N  ai+N+1;

since all possible scores occur, this means that we can find N scores with sum 7.4N by
taking ai, . . . , ai+N+1 and omitting one occurrence of the value si + ai+N+1 � 7.4N .

Remark: David Savitt (via Art of Problem Solving) points out that a similar argument
applies provided that there are an even number of students, the total score is even, and
the achieved scores form a block of consecutive integers.

Second solution. We first claim that for any integer m with 15  m  40, we can find
five distinct elements of the set {1, 2, . . . , 10} whose sum is m. Indeed, for 0  k  4 and
1  `  6, we have

0

@
kX

j=1

j

1

A+ (k + `) +

0

@
10X

j=k+7

j

1

A = 34� 5k + `,



and for fixed k this takes all values from 35 � 5k to 40 � 5k inclusive; then as k ranges
from 0 to 4, this takes all values from 15 to 40 inclusive.

Now suppose that the scores are a1, . . . , a2N , where we order the scores so that ak = k

for k  10 and the subsequence a11, a12, . . . , a2N is nondecreasing. For 1  k  N � 4,
define Sk =

Pk+N+4
j=k+10 aj . Note that for each k, Sk+1 � Sk = ak+N+5 � ak+10 and so

0  Sk+1 � Sk  10. Thus S1, . . . , SN�4 is a nondecreasing sequence of integers where
each term is at most 10 more than the previous one. On the other hand, we have

S1 + SN�4 =
2NX

j=11

aj

= (7.4)(2N)�
10X

j=1

aj

= (7.4)(2N)� 55,

whence S1  7.4N � 27.5  SN�4. It follows that there is some k such that Sk 2
[7.4N � 40, 7.4N � 15], since this interval has length 25 and 7.4N � 27.5 lies inside it.

For this value of k, note that both Sk and 7.4N are integers (the latter since the sum of
all scores in the class is the integer (7.4)(2N) and so N must be divisible by 5). Thus
there is an integer m with 15  m  40 for which Sk = 7.4N �m. By our first claim,
we can choose five scores from a1, . . . , a10 whose sum is m. When we add these to the
sum of the N � 5 scores ak+10, . . . , ak+N+4, we get precisely 7.4N . We have now found
N scores whose sum is 7.4N and thus whose average is 7.4.

Third solution. It will su�ces to show that given any partition of the students into two
groups of N , if the sums are not equal we can bring them closer together by swapping
one pair of students between the two groups. To state this symbolically, let S be the
set of students and, for any subset T of S, let ⌃T denote the sum of the scores of the
students in T ; we then show that if S = A [ B is a partition into two N -element sets
with ⌃A > ⌃B, then there exist students a 2 A,B 2 B such that the sets

A
0 = A \ {a} [ {b}, B

0 = A \ {b} [ {a}

satisfy
0  ⌃A0 � ⌃B0

< ⌃A� ⌃B.

In fact, this argument will apply at the same level of generality as in the remark following
the first solution.

To prove the claim, let a1, . . . , an be the scores in A and let b1, . . . , bn be the scores in
B (in any order). Since ⌃A � ⌃B ⌘ ⌃S (mod 2) and the latter is even, we must have
⌃A� ⌃B � 2. In particular, there must exist indices i, j 2 {1, . . . , n} such that ai > bj .
Consequently, if we sort the sequence a1, . . . , an, b1, . . . , bn into nondecreasing order, it
must be the case that some term bj is followed by some term ai. Moreover, since the
achieved scores form a range of consecutive integers, we must in fact have ai = bj + 1.
Consequently, if we take a = ai, b = bj , we then have ⌃A0 �⌃0

B = ⌃A�⌃B � 2, which
proves the claim.

5 First solution. Let an, bn, cn be the probabilities that players A, B, C, respectively,
will win the game. We compute these by induction on n, starting with the values

a1 = 1, b1 = 0, c1 = 0.



If player A draws card k, then the resulting game state is that of a deck of k � 1 cards
with the players taking turns in the order B,C,A,B, . . . . In this state, the probabilities
that players A,B,C will win are ck�1, ak�1, bk�1 provided that we adopt the convention
that

a0 = 0, b0 = 0, c0 = 1.

We thus have

an =
1

n

nX

k=1

ck�1, bn =
1

n

nX

k=1

ak�1, cn =
1

n

nX

k=1

bk�1.

Put
xn = an � bn, yn = bn � cn, zn = cn � an;

we then have

xn+1 =
n

n+ 1
xn +

1

n+ 1
zn,

yn+1 =
n

n+ 1
yn +

1

n+ 1
xn,

zn+1 =
n

n+ 1
zn +

1

n+ 1
yn.

Note that if an+1 = bn+1 = cn+1 = 0, then

xn = �nzn = n
2
yn = �n

3
xn = n

4
zn

and so xn = zn = 0, or in other words an = bn = cn. By induction on n, we deduce
that an, bn, cn cannot all be equal. That is, the quantities xn, yn, zn add up to zero and
at most one of them vanishes; consequently, the quantity rn =

p
x2n + y2n + z2n is always

positive and the quantities

x
0
n =

xn

rn
, y

0
n =

yn

rn
, z

0
n =

zn

rn

form the coordinates of a point Pn on a fixed circle C in R3.

Let P
0
n be the point (zn, xn, yn) obtained from Pn by a clockwise rotation of angle 2⇡

3 .
The point Pn+1 then lies on the ray through the origin passing through the point dividing
the chord from Pn to P

0
n in the ratio 1 : n. The (clockwise) arc from Pn to Pn+1 therefore

has a measure of

arctan

p
3

2n� 1
=

p
3

2n� 1
+O(n�3);

these measures form a null sequence whose sum diverges. It follows that any arc of C con-

tains infinitely many of the Pn; taking a suitably short arc around the point (
p
2
2 , 0,�

p
2
2 ),

we deduce that for infinitely many n, A has the highest winning probability, and similarly
for B and C.

Remark: From the previous analysis, we also deduce that

rn+1

rn
=

p
n2 � n+ 1

n+ 1
= 1� 3

2(n+ 1)
+O(n�2),

from which it follows that rn ⇠ cn
�3/2 for some c > 0.



Second solution. (by Noam Elkies) In this approach, we instead compute the proba-
bility pn(m) that the game ends after exactly m turns (the winner being determined by
the residue of m mod 3). We use the convention that p0(0) = 1, p0(m) = 0 for m > 0.
Define the generating function Pn(X) =

Pn
m=0 pn(m)xm. We will establish that

Pn(X) =
X(X + 1) · · · (X + n� 1)

n!

(which may be guessed by computing pn(m) for small n by hand). There are several
ways to do this; for instance, this follows from the recursion

Pn(X) =
1

n
XPn�1(X) +

(n� 1)

n
Pn�1(X).

(In this recursion, the first term corresponds to conditional probabilities given that the
first card drawn is n, and the second term corresponds to the remaining cases.)

Let ! be a primitive cube root of 1. With notation as in the first solution, we have

Pn(!) = an + bn! + cn!;

combining this with the explicit formula for Pn(X) and the observation that

arg(w + n) = arctan

p
3

2n� 1

recovers the geometric description of an, bn, cn given in the first solution (as well as the
remark following the first solution).

Third solution. For this argument, we use the auxiliary quantities

a
0
n = an � 1

3
, b

0
n = bn � 1

3
, c

0
n = cn � 1

3
;

these satisfy the relations

a
0
n =

1

n

nX

k=1

c
0
k�1, b

0
n =

1

n

nX

k=1

a
0
k�1, c

0
n =

1

n

nX

k=1

b
0
k�1

as well as

a
0
n+1 = a

0
n +

1

n+ 1
(c0n � a

0
n)

b
0
n+1 = b

0
n +

1

n+ 1
(a0n � b

0
n)

c
0
n+1 = c

0
n +

1

n+ 1
(b0n � c

0
n).

We now show that
P1

n=1 a
0
n cannot diverge to +1 (and likewise for

P1
n=1 b

0
n and

P1
n=1 c

0
n

by similar reasoning). Suppose the contrary; then there exists some ✏ > 0 and some
n0 > 0 such that

Pn
k=1 a

0
k � ✏ for all n � n0. For n > n0, we have b

0
n � ✏; this in turn

implies that
P1

n=1 b
0
n diverges to +1. Continuing around the circle, we deduce that for

n su�ciently large, all three of a0n, b
0
n, c

0
n are positive; but this contradicts the identity

a
0
n+ b

0
n+ c

0
n = 0. We thus conclude that

P1
n=1 a

0
n does not diverge to +1; in particular,

lim infn!1 a
0
n  0.



By the same token, we may see that
P1

n=1 a
0
n cannot converge to a positive limit L (and

likewise for
P1

n=1 b
0
n and

P1
n=1 c

0
n by similar reasoning). Namely, this would imply that

b
0
n � L/2 for n su�ciently large, contradicting the previous argument.

By similar reasoning,
P1

n=1 a
0
n cannot diverge to �1 or converge to a negative limit L

(and likewise for
P1

n=1 b
0
n and

P1
n=1 c

0
n by similar reasoning).

We next establish that there are infinitely many n for which a
0
n > 0 (and likewise for

b
0
n and c

0
n by similar reasoning). Suppose to the contrary that for n su�ciently large,

we have a
0
n  0. By the previous arguments, the sum

P1
n=1 a

0
n cannot diverge to 1

or converge to a nonzero limit; it must therefore converge to 0. In particular, for n

su�ciently large, we have b
0
n =

Pn
k=1 a

0
k�1 � 0. Iterating the construction, we see that

for n su�ciently large, we must have c
0
n  0, a0n � 0, b0n  0, and c

0
n � 0. As a result, for

n su�ciently large we must have a
0
n = b

0
n = c

0
n = 0; but we may rule this out as in the

original solution.

By similar reasoning, we may deduce that there are infinitely many n for which a
0
n < 0

(and likewise for b0n and c
0
n by similar reasoning). We now continue using a suggestion of

Jon Atkins. Define the values of the sequence xn according to the relative comparison of
a
0
n, b

0
n, c

0
n (using the fact that these cannot all be equal):

xn = 1 : a
0
n  b

0
n < c

0
n

xn = 2 : b
0
n  c

0
n < a

0
n

xn = 3 : c
0
n  a

0
n < b

0
n

xn = 4 : a
0
n < c

0
n  b

0
n

xn = 5 : b
0
n < a

0
n  c

0
n

xn = 6 : c
0
n < b

0
n  a

0
n.

We consider these values as states and say that there is a transition from state i to state
j, and write i ) j, if for every n � 2 with xn = i there exists n

0
> n with xn0 = j.

(In all cases when we use this notation, it will in fact be the case that the first value of
n
0
> n for which xn0 6= i satisfes xn0 = j, but this is not logically necessary for our final

conclusion.)

Suppose that xn = 1. By the earlier discussion, we must have a
0
n0 > 0 for some n

0
> n,

and so we cannot have xn0 = 1 for all n0
> n. On the other hand, as long as xn = 1, we

have

c
0
n+1 � b

0
n+1 = c

0
n � b

0
n +

1

n+ 1
(2b0n � a

0
n � c

0
n)

=
n� 1

n+ 1
(c0n � b

0
n) +

1

n+ 1
(c0n � a

0
n) > 0

c
0
n+1 � a

0
n+1 = c

0
n � a

0
n +

1

n+ 1
(a0n + b

0
n � 2c0n)

=
n� 1

n+ 1
(c0n � a

0
n) +

1

n+ 1
(b0n � a

0
n) > 0.

Consequently, for n
0 the smallest value for which xn0 6= xn, we must have xn0 = 2. By

this and two similar arguments, we deduce that

1 ) 5, 2 ) 6, 3 ) 4.



Suppose that xn = 4. By the earlier discussion, we must have a
0
n0 < 0 for some n

0
> n,

and so we cannot have xn0 = 4 for all n0
> n. On the other hand, as long as xn = 4, we

have

b
0
n+1 � a

0
n+1 = b

0
n � a

0
n +

1

n+ 1
(2a0n � b

0
n � c

0
n)

=
n� 1

n+ 1
(b0n � a

0
n) +

1

n+ 1
(b0n � c

0
n) > 0

c
0
n+1 � a

0
n+1 = c

0
n � a

0
n +

1

n+ 1
(a0n + b

0
n � 2c0n)

=
n� 1

n+ 1
(c0n � a

0
n) +

1

n+ 1
(b0n � a

0
n) > 0.

Consequently, for n
0 the smallest value for which xn0 6= xn, we must have xn0 = 1. By

this and two similar arguments, we deduce that

4 ) 1, 5 ) 2, 6 ) 3.

Combining, we obtain
1 ) 5 ) 2 ) 6 ) 3 ) 4 ) 1

and hence the desired result.

6 The number of such colorings is 220310 = 61917364224.

First solution: Identify the three colors red, white, and blue with (in some order) the
elements of the field F3 of three elements (i.e., the ring of integers mod 3). The set of
colorings may then be identified with the F3-vector space FE

3 generated by the set E of
edges. Let F be the set of faces, and let FF

3 be the F3-vector space on the basis F ; we
may then define a linear transformation T : FE

3 ! FF
3 taking a coloring to the vector

whose component corresponding to a given face equals the sum of the three edges of
that face. The colorings we wish to count are the ones whose images under T consist of
vectors with no zero components.

We now show that T is surjective. (There are many possible approaches to this step;
for instance, see the following remark.) Let � be the dual graph of the icosahedron,
that is, � has vertex set F and two elements of F are adjacent in � if they share an
edge in the icosahedron. The graph � admits a hamiltonian path, that is, there exists an
ordering f1, . . . , f20 of the faces such that any two consecutive faces are adjacent in �. For
example, such an ordering can be constructed with f1, . . . , f5 being the five faces sharing
a vertex of the icosahedron and f16, . . . , f20 being the five faces sharing the antipodal
vertex.

For i = 1, . . . , 19, let ei be the common edge of fi and fi+1; these are obviously all
distinct. By prescribing components for e1, . . . , e19 in turn and setting the others to zero,
we can construct an element of FE

3 whose image under T matches any given vector of
FF
3 in the components of f1, . . . , f19. The vectors in FF

3 obtained in this way thus form
a 19-dimensional subspace; this subspace may also be described as the vectors for which
the components of f1, . . . , f19 have the same sum as the components of f2, . . . , f20.

By performing a mirror reflection, we can construct a second hamiltonian path g1, . . . , g20

with the property that

g1 = f1, g2 = f5, g3 = f4, g4 = f3, g5 = f2.



Repeating the previous construction, we obtain a di↵erent 19-dimensional subspace of
FF
3 which is contained in the image of T . This implies that T is surjective, as asserted

earlier.

Since T is a surjective homomorphism from a 30-dimensional vector space to a 20-
dimensional vector space, it has a 10-dimensional kernel. Each of the 220 elements of FF

3

with no zero components is then the image of exactly 310 colorings of the desired form,
yielding the result.

Remark: There are many ways to check that T is surjective. One of the simplest is
the following (from Art of Problem Solving, user Ravi12346): form a vector in FE with
components 2, 1, 2, 1, 2 at the five edges around some vertex and all other components 0.
This maps to a vector in FF with only a single nonzero component; by symmetry, every
standard basis vector of FF arises in this way.

Second solution: (from Bill Huang, via Art of Problem Solving user superpi83) Let v
and w be two antipodal vertices of the icosahedron. Let Sv (resp. Sw) be the set of five
edges incident to v (resp. w). Let Tv (resp. Tw) be the set of five edges of the pentagon
formed by the opposite endpoints of the five edges in Sv (resp. Sw). Let U be the set of
the ten remaining edges of the icosahedron.

Consider any one of the 310 possible colorings of U . The edges of Tv [ U form the
boundaries of five faces with no edges in common; thus each edge of Tv can be colored in
one of two ways consistent with the given condition, and similarly for Tw. That is, there
are 310210 possible colorings of Tv [ Tw [ U consistent with the given condition.

To complete the count, it su�ces to check that there are exactly 25 ways to color Sv con-
sistent with any given coloring of Tv. Using the linear-algebraic interpretation from the
first solution, this follows by observing that (by the previous remark) the map from FSv

3
to the F3-vector space on the faces incident to v is surjective, and hence an isomorphism
for dimensional reasons. A direct combinatorial proof is also possible.

7 Recall that L1 and L2 intersect if and only if they are not parallel. In one direction,
suppose that L1 and L2 intersect. Then for any P and �, the dilation (homothety) of the
plane by a factor of � with center P carries L1 to another line parallel to L1 and hence
not parallel to L2. Let A2 be the unique intersection of L2 with the image of L1, and let

A1 be the point on L1 whose image under the dilation is A2; then
��!
PA2 = �

��!
PA1.

In the other direction, suppose that L1 and L2 are parallel. Let P be any point in the
region between L1 and L2 and take � = 1. Then for any point A1 on L1 and any point

A2 on L2, the vectors
��!
PA1 and

��!
PA2 have components perpendicular to L1 pointing in

opposite directions; in particular, the two vectors cannot be equal.

Reinterpretation: (by Karl Mahlburg) In terms of vectors, we may find vectors ~v1,~v2
and scalars c1, c2 such that Li = {~x 2 R2 : ~vi · ~x = ci}. The condition in the problem
amounts to finding a vector ~w and a scalar t such that P + ~w 2 L1, P + �w 2 L2; this
comes down to solving the linear system

~v1 · (P + ~w) = c1

~v2 · (P + �~w) = c2

which is nondegenerate and solvable for all � if and only if ~v1,~v2 are linearly independent.



8 We prove that the smallest value of a is 16.

Note that the expression for N can be rewritten as k(2a + k � 1)/2, so that 2N =
k(2a + k � 1). In this expression, k > 1 by requirement; k < 2a + k � 1 because a > 1;
and obviously k and 2a + k � 1 have opposite parity. Conversely, for any factorization
2N = mn with 1 < m < n and m,n of opposite parity, we obtain an expression of N in
the desired form by taking k = m, a = (n+ 1�m)/2.

We now note that 2017 is prime. (On the exam, solvers would have had to verify this
by hand. Since 2017 < 452, this can be done by trial division by the primes up to 43.)
For N = 2017(2a + 2016) not to have another expression of the specified form, it must
be the case that 2a+ 2016 has no odd divisor greater than 1; that is, 2a+ 2016 must be
a power of 2. This first occurs for 2a+ 2016 = 2048, yielding the claimed result.

Reinterpretation: (by Karl Mahlburg) To avoid N having another representation, for
k = 2, . . . , 2016, we must have

N 6⌘
(
k/2 k ⌘ 0 (mod 2)

0 k ⌘ 1 (mod 2).

Consequently, N 6⌘ 0 (mod p) for any odd prime p < 2017 and N ⌘ 0 (mod 1024). Since
N must be divisible by 2017, this again yields the claimed value of a.

9 Suppose by way of contradiction that f(1/2) is rational. Then
P1

i=0 ci2
�i is the binary

expansion of a rational number, and hence must be eventually periodic; that is, there
exist some integers m,n such that ci = cm+i for all i � n. We may then write

f(x) =
n�1X

i=0

cix
i +

x
n

1� xm

m�1X

i=0

cn+ix
i
.

Evaluating at x = 2/3, we may equate f(2/3) = 3/2 with

1

3n�1

n�1X

i=0

ci2
i3n�i +

2n3m

3n+m�1(3m � 2m)

m�1X

i=0

cn+i2
i3m�1�i;

since all terms on the right-hand side have odd denominator, the same must be true of
the sum, a contradiction.

Remark: Greg Marks asks whether the assumption that f(2/3) = 3/2 further en-
sures that f(1/2) is transcendental. We do not know of any existing results that would
imply this. However, the following result follows from a theorem of T. Tanaka (Alge-
braic independence of the values of power series generated by linear recurrences, Acta
Arith. 74 (1996), 177–190), building upon work of Mahler. Let {an}1n=0 be a linear
recurrent sequence of positive integers with characteristic polynomial P . Suppose that
P (0), P (1), P (�1) 6= 0 and that no two distinct roots of P have ratio which is a root
of unity. Then for f(x) =

P1
n=0 x

an , the values f(1/2) and f(2/3) are algebraically
independent over Q. (Note that for f as in the original problem, the condition on ratios
of roots of P fails.)

10 We prove that the sum equals (log 2)2; as usual, we write log x for the natural logarithm
of x instead of lnx. Note that of the two given expressions of the original sum, the first



is absolutely convergent (the summands decay as log(x)/x2) but the second one is not;
we must thus be slightly careful when rearranging terms.

First solution. Define ak = log k
k � log(k+1)

k+1 . The infinite sum
P1

k=1 ak converges to

0 since
Pn

k=1 ak telescopes to � log(n+1)
n+1 and this converges to 0 as n ! 1. Note that

ak > 0 for k � 3 since log x
x is a decreasing function of x for x > e, and so the convergence

of
P1

k=1 ak is absolute.

Write S for the desired sum. Then since 3a4k+2 + 2a4k+3 + a4k+4 = (a4k+2 + a4k+4) +
2(a4k+2 + a4k+3), we have

S =
1X

k=0

(3a4k+2 + 2a4k+3 + a4k+4)

=
1X

k=1

a2k +
1X

k=0

2(a4k+2 + a4k+3),

where we are allowed to rearrange the terms in the infinite sum since
P

ak converges

absolutely. Now 2(a4k+2 + a4k+3) =
log(4k+2)

2k+1 � log(4k+4)
2k+2 = a2k+1 + (log 2)( 1

2k+1 � 1
2k+2),

and summing over k gives

1X

k=0

2(a4k+2 + a4k+3) =
1X

k=0

a2k+1 + (log 2)
1X

k=1

(�1)k+1

k

=
1X

k=0

a2k+1 + (log 2)2.

Finally, we have

S =
1X

k=1

a2k +
1X

k=0

a2k+1 + (log 2)2

=
1X

k=1

ak + (log 2)2 = (log 2)2.

Second solution. We start with the following observation: for any positive integer n,

d

ds
n
�s

����
s=1

= �(log n)n�s
.

(Throughout, we view s as a real parameter, but see the remark below.) For s > 0,
consider the absolutely convergent series

L(s) =
1X

k=0

(3(4k + 2)�s � (4k + 3)�s � (4k + 4)�s � (4k + 5)�s);

in the same range we have

L
0(s) =

1X

k=0

✓
3
log(4k + 2)

(4k + 2)s
� log(4k + 3)

(4k + 3)s

+
log(4k + 4)

(4k + 4)s
� log(4k + 5)

(4k + 5)s

◆
,



so we may interchange the summation with taking the limit at s = 1 to equate the
original sum with �L

0(1).

To make further progress, we introduce the Riemann zeta function ⇣(s) =
P1

n=1 n
�s,

which converges absolutely for s > 1. In that region, we may freely rearrange sums to
write

L(s) + ⇣(s) = 1 + 4(2�s + 6�s + 10�s + · · · )
= 1 + 22�s(1 + 3�s + 5�s + · · · )
= 1 + 22�s(⇣(s)� 2�s � 4�s � · · · )
= 1 + 22�s

⇣(s)� 22�2s
⇣(s).

In other words, for s > 1, we have

L(s) = 1 + ⇣(s)(�1 + 22�s � 22�2s).

Now recall that ⇣(s) � s
s�1 extends to a C

1 function for s > 0, e.g., by applying Abel
summation to obtain

⇣(s)� s

s� 1
=
X

n=1

n(n�s � (n+ 1)�s)� s

s� 1

= s

1X

n=1

n

Z n+1

n
x
�s�1

dx� s

s� 1

= �s

Z 1

1
(x� bxc)x�s�1

dx.

Also by writing 22�s = 2 exp((1 � s) log 2 and 22�2s = exp(2(1 � s) log 2), we may use
the exponential series to compute the Taylor expansion of

f(s) =
�1 + 22�s � 22�2s

s� 1

at s = 1; we get
f(s) = �(log 2)2(s� 1)2 +O((s� 1)3).

Consequently, if we rewrite the previous expression for L(s) as

L(s) = 1 + (s� 1)⇣(s) · �1 + 22�s � 22�2s

s� 1
,

then we have an equality of C1 functions for s > 1, and hence (by continuity) an equality
of Taylor series about s = 1. That is,

L(s) = 1� (log 2)2(s� 1) +O((s� 1)2),

which yields the desired result.

Remark:

The use of series
P1

n=1 cnn
�s as functions of a real parameter s dates back to Euler,

who observed that the divergence of ⇣(s) as s ! 1 gives a proof of the infinitude of
primes distinct from Euclid’s approach, and Dirichlet, who upgraded this idea to prove



his theorem on the distribution of primes across arithmetic progressions. It was Riemann
who introduced the idea of viewing these series as functions of a complex parameter, thus
making it possible to use the tools of complex analysis (e.g., the residue theorem) and
leading to the original proof of the prime number theorem by Hadamard and de la Vallée
Poussin.

In the language of complex analysis, one may handle the convergence issues in the second
solution in a di↵erent way: use the preceding calculation to establish the equality

L(s) = 1 + ⇣(s)(�1 + 22�s � 22�2s)

for Real(s) > 1, then observe that both sides are holomorphic for Real(s) > 0 and so the
equality extends to that larger domain.

11 The desired integers are (a, b, c) = (9, 8, 7).

Suppose we have a triangle T = 4ABC with BC = a, CA = b, AB = c and a > b > c.
Say that a line is an area equalizer if it divides T into two regions of equal area. A
line intersecting T must intersect two of the three sides of T . First consider a line
intersecting the segments AB at X and BC at Y , and let BX = x, BY = y. This line is
an area equalizer if and only if xy sinB = 2area(4XBY ) = area(4ABC) = 1

2ac sinB,
that is, 2xy = ac. Since x  c and y  a, the area equalizers correspond to values
of x, y with xy = ac/2 and x 2 [c/2, c]. Such an area equalizer is also an equalizer
if and only if p/2 = x + y, where p = a + b + c is the perimeter of T . If we write
f(x) = x + ac/(2x), then we want to solve f(x) = p/2 for x 2 [c/2, c]. Now note that
f is convex, f(c/2) = a + c/2 > p/2, and f(c) = a/2 + c < p/2; it follows that there
is exactly one solution to f(x) = p/2 in [c/2, c]. Similarly, for equalizers intersecting T

on the sides AB and AC, we want to solve g(x) = p/2 where g(x) = x + bc/(2x) and
x 2 [c/2, c]; since g is convex and g(c/2) < p/2, g(c) < p/2, there are no such solutions.

It follows that if T has exactly two equalizers, then it must have exactly one equalizer
intersecting T on the sides AC and BC. Here we want to solve h(x) = p/2 where
h(x) = x + ab/(2x) and x 2 [a/2, a]. Now h is convex and h(a/2) > p/2, h(a) > p/2;
thus h(x) = p/2 has exactly one solution x 2 [a/2, a] if and only if there is x0 2 [a/2, a]
with h

0(x0) = 0 and h(x0) = p/2. The first condition implies x0 =
p
ab/2, and then

the second condition gives 8ab = p
2. Note that

p
ab/2 is in [a/2, a] since a > b and

a < b+ c < 2b.

We conclude that T has two equalizers if and only if 8ab = (a + b + c)2. Note that
(a, b, c) = (9, 8, 7) works. We claim that this is the only possibility when a > b > c are
integers and a  9. Indeed, the only integers (a, b) such that 2  b < a  9 and 8ab
is a perfect square are (a, b) = (4, 2), (6, 3), (8, 4), (9, 2), and (9, 8), and the first four
possibilities do not produce triangles since they do not satisfy a < 2b. This gives the
claimed result.

12 First solution. The desired count is 2016!
1953! � 63! · 2016, which we compute using the

principle of inclusion-exclusion. As in A2, we use the fact that 2017 is prime; this
means that we can do linear algebra over the field F2017. In particular, every nonzero
homogeneous linear equation in n variables over F2017 has exactly 2017n�1 solutions.

For ⇡ a partition of {0, . . . , 63}, let |⇡| denote the number of distinct parts of ⇡, Let ⇡0
denote the partition of {0, . . . , 63} into 64 singleton parts. Let ⇡1 denote the partition



of {0, . . . , 63} into one 64-element part. For ⇡,� two partitions of {0, . . . , 63}, write ⇡|�
if ⇡ is a refinement of � (that is, every part in � is a union of parts in ⇡). By induction
on |⇡|, we may construct a collection of integers µ⇡, one for each ⇡, with the properties
that

X

⇡|�

µ⇡ =

(
1 � = ⇡0

0 � 6= ⇡0
.

Define the sequence c0, . . . , c63 by setting c0 = 1 and ci = i for i > 1. Let N⇡ be the
number of ordered 64-tuples (x0, . . . , x63) of elements of F2017 such that xi = xj whenever
i and j belong to the same part and

P63
i=0 cixi is divisible by 2017. Then N⇡ equals

2017|⇡|�1 unless for each part S of ⇡, the sum
P

i2S ci vanishes; in that case, N⇡ instead

equals 2017|⇡|. Since c0, . . . , c63 are positive integers which sum to 1 + 63·64
2 = 2017, the

second outcome only occurs for ⇡ = ⇡1. By inclusion-exclusion, the desired count may
be written as X

⇡

µ⇡N⇡ = 2016 · µ⇡1 +
X

⇡

µ⇡2017
|⇡|�1

.

Similarly, the number of ordered 64-tuples with no repeated elements may be written as

64!

✓
2017

64

◆
=
X

⇡

µ⇡2017
|⇡|
.

The desired quantity may thus be written as 2016!
1953! + 2016µ⇡1 .

It remains to compute µ⇡1 . We adopt an approach suggested by David Savitt: apply
inclusion-exclusion to count distinct 64-tuples in an arbitrary set A. As above, this yields

|A|(|A|� 1) · · · (|A|� 63) =
X

⇡

µ⇡|A||⇡|.

Viewing both sides as polynomials in |A| and comparing coe�cients in degree 1 yields
µ⇡ = �63! and thus the claimed answer.

Second solution. (from Art of Problem Solving, user ABCDE) We first prove an auxiliary
result.

Lemma. Fix a prime p and define the function f(k) on positive integers by the conditions

f(1, p) = 0

f(k, p) =
(p� 1)!

(p� k)!
� kf(k � 1, p) (k > 1).

Then for any positive integers a1, . . . , ak with a1 + · · · + ak < p, there are exactly f(p)
solutions to the equation a1x1+ · · ·+akxk = 0 with x1, . . . , xk 2 Fp nonzero and pairwise
distinct.

Proof. We check the claim by induction, with the base case k = 1 being obvious. For
the induction step, assume the claim for k � 1. Let S be the set of k-tuples of distinct
elements of Fp; it consists of

p!
(p�k)! elements. This set is stable under the action of i 2 Fp

by translation:
(x1, . . . , xk) 7! (x1 + i, . . . , xk + i).



Since 0 < a1 · · · + ak < p, exactly one element of each orbit gives a solution of a1x1 +
· · · + akxk = 0. Each of these solutions contributes to f(k) except for those in which
xi = 0 for some i. Since then xj 6= 0 for all j 6= i, we may apply the induction hypothesis
to see that there are f(k � 1, p) solutions that arise this way for a given i (and these do
not overlap). This proves the claim.

To compute f(k, p) explicitly, it is convenient to work with the auxiliary function

g(k, p) =
pf(k, p)

k!
;

by the lemma, this satisfies g(1, p) = 0 and

g(k, p) =

✓
p

k

◆
� g(k � 1, p)

=

✓
p� 1

k

◆
+

✓
p� 1

k � 1

◆
� g(k � 1, p) (k > 1).

By induction on k, we deduce that

g(k, p)�
✓
p� 1

k

◆
= (�1)k�1

✓
g(1, p)�

✓
p� 1

1

◆◆

= (�1)k(p� 1)

and hence g(k, p) =
�p�1

k

�
+ (�1)k(p� 1).

We now set p = 2017 and count the tuples in question. Define c0, . . . , c63 as in the first
solution. Since c0 + · · ·+ c63 = p, the translation action of Fp preserves the set of tuples;
we may thus assume without loss of generality that x0 = 0 and multiply the count by p

at the end. That is, the desired answer is

2017f(63, 2017) = 63!g(63, 2017)

= 63!

✓✓
2016

63

◆
� 2016

◆

as claimed.


