Background 000000	Main Results 0000000000	Limitations 00	Further Questions 0	Bibliography 0000
	Investigating Na	atural Theo	ries through th	<u>م</u>

Investigating Natural Theories through the Consistency Operator

Graduate Logic Seminar

Hongyu Zhu

University of Wisconsin-Madison

October 24, 2022

Background	Main Results	Limitations	Further Questions	Bibliography
000000	0000000000	00	0	0000
Table of Co	ontents			

2 Main Results

3 Limitations

4 Further Questions

5 Bibliography

A B + A B +

э

Background	Main Results	Limitations	Further Questions	Bibliography
●00000	0000000000	00	0	0000
Natural The	eories			

The big question:

Why are "natural" theories usually linearly ordered by consistency strength?

Answer: We don't fully know yet, but there has been some successful attempts.

Example: ordinal analysis.

Background	Main Results	Limitations	Further Questions	Bibliography
○●0000	0000000000	00	0	0000
Ordinal Ana	alysis			

One equivalent definition of the proof-theoretic ordinal, the Π_1 ordinal, is defined using iterated consistency statements:

Definition (Π_1 Ordinal)

Fix the base theory EA⁺. Define $EA_0^+ = EA^+, EA_{\alpha+1}^+ = EA_{\alpha}^+ \cup \{Con(EA_{\alpha}^+)\}$, and $EA_{\lambda}^+ = \cup_{\alpha < \lambda} EA_{\alpha}^+$ for limit λ .

Then the Π_1 ordinal of any theory T is

$$|T|_{\Pi_1} = \sup\{\alpha | \mathsf{EA}^+_\alpha \subset T\}.$$

伺 ト イ ヨ ト イ ヨ ト

Background	Main Results	Limitations	Further Questions	Bibliography
00●000	0000000000	00	0	0000
The Con	Operator			

Why was the Con operator used? We might want to say:

Pseudo-claim 1

Con(T) is the weakest (true) statement not determined by T.

Some evidence in support of the claim: incompleteness theorem; low for the jump in provability degrees.

Background	Main Results	Limitations	Further Questions	Bibliography
00●000	0000000000	00	0	0000
The Con	Operator			

Why was the Con operator used? We might want to say:

Pseudo-claim 1

Con(T) is the weakest (true) statement not determined by T.

Some evidence in support of the claim: incompleteness theorem; low for the jump in provability degrees.

But it is not true.

Counterexamples: SlowCon; extensional uniform density function.

Background	Main Results	Limitations	Further Questions	Bibliography
000●00	0000000000	00	0	0000
The Con O	perator			

So we can improve the pseudo-claim as follows:

Pseudo-claim 2

Con(T) is the weakest (true) *natural* statement not determined by T.

But this remains a pseudo-claim because "naturality" is not well-defined.

Background	Main Results	Limitations	Further Questions	Bibliography
0000●0	0000000000	00	0	0000
Martin's Co	onjecture			

Let's look at another question: what are the "natural" Turing degrees?

Examples: $0, 0', 0'', \dots, 0^{(\alpha)}, \dots, \mathcal{O}, \dots$

伺 ト く ヨ ト く ヨ ト

э

Background	Main Results	Limitations	Further Questions	Bibliography
0000●0	0000000000	00	0	0000
Martin's	Conjecture			

Let's look at another question: what are the "natural" Turing degrees?

Examples: $0, 0', 0'', \dots, 0^{(\alpha)}, \dots, \mathcal{O}, \dots$

Instead of asking what the natural Turing degrees are, we can try to classify the "natural" functions on the Turing degrees.

Advantage: easier to "ask for naturality," e.g. uniform/computable/order-preserving/almost everywhere/...

伺 ト く ヨ ト く ヨ ト

Background	Main Results	Limitations	Further Questions	Bibliography
00000●	0000000000	00	0	0000
Martin's Co	njecture			

Here is a rephrased version of Martin's Conjecture.

Conjecture (Martin)

Assume ZF + DC + AD. (i) If $f : 2^{\omega} \rightarrow 2^{\omega}$ is degree-invariant, then either f is constant on a cone, or f is above the identity on a cone. (ii) The relation " $f \leq_T g$ on a cone" prewellorders the set of all degree-invariant functions, with the jump inducing the successor operation.

Parts of the conjecture has been proven when restricted to uniformly degree-invariant/order-preserving functions.

伺 ト イ ヨ ト イ ヨ ト

Background	Main Results	Limitations	Further Questions	Bibliography
	•000000000			

Statement of the Theorem

Goal: Formalize the pseudo-claim by analogy with Martin's Conjecture.

Setting: Work in the Lindenbaum algebra of a base theory (EA by default).

Write $\varphi \vdash \psi$ if $\mathsf{EA} \vdash \varphi \rightarrow \psi$. Write $[\varphi]$ for the equivalence class of φ . Say φ strictly implies ψ if $\varphi \vdash \psi$ but $\psi \not\vdash \varphi$.

Say a sentence φ is true if it is true in the standard model \mathbb{N} ; consistent if it is consistent with EA, i.e. $\operatorname{Con}(\varphi)$ is true.

A cone has the form $\{\varphi | \varphi \vdash \psi\}$. It is a true cone if ψ is true.

For any function f, say f is extensional if $[\varphi] = [\psi]$ implies $[f(\varphi)] = [f(\psi)]$ (i.e. well-defined on the Lindenbaum algebra); monotonic if $\varphi \vdash \psi$ implies $f(\varphi) \vdash f(\psi)$.

All f are assumed to be computable unless stated otherwise.

Background	Main Results	Limitations	Further Questions	Bibliography
	0000000000			
Statement	of the Theo	ram		

Conjecture

(i) If f is monotonic and above the identity, then either f is the identity on a true cone, or f is above Con \wedge Id on a true cone. (ii) The relation " $f \vdash g$ on a true cone" prewellorders the set of all extensional functions, with the jump inducing the successor operation.

Modifications:

- $\geq_T \rightarrow \vdash$;
- Turing jump \rightarrow Con, or really Con \wedge Id;
- Degree-invariant/order-preserving \rightarrow extensional/monotonic;
- $\bullet~$ On a cone \rightarrow on a true cone/. . .
- AD \rightarrow ?

- 4 同 6 4 日 6 4 日 6 - 日

Background	Main Results	Limitations	Further Questions	Bibliography
	000000000			
Statement	of the Theorem	m		

As a first step, we establish a weakened version of (i).

Theorem

Suppose f is monotonic, and for all consistent φ we have: $f(\varphi)$ strictly implies φ , and $\varphi \wedge \operatorname{Con}(\varphi)$ implies $f(\varphi)$. Then f and $\operatorname{Con} \wedge \operatorname{Id}$ agrees cofinally, i.e. for every true φ there is a true $\theta \vdash \varphi$ such that $[f(\theta)] = [\theta \wedge \operatorname{Con}(\theta)]$.

Corollary

There is no monotonic function strictly between Id and Con \wedge Id (except on [\bot]).

伺 ト イ ヨ ト イ ヨ ト

Background	Main Results	Limitations	Further Questions	Bibliography
000000	000●0000000	00	0	0000
Proof of th	e Theorem			

Proof.

Fix a true sentence φ . The following sentence is true:

$$\chi := \forall \xi(\mathsf{Con}(\xi) \to \mathsf{Con}(\xi \land \neg f(\xi))).$$

Thus $\psi := \chi \wedge \varphi$ is true. Now define:

$$\theta := \psi \wedge (f(\psi) \rightarrow \operatorname{Con}(\psi)).$$

It suffices to show $f(\theta) \vdash \theta \land Con(\theta)$. This is because:

$$f(\theta) \vdash \theta \land f(\psi) \vdash \psi \land \mathsf{Con}(\psi) \vdash \theta \land \mathsf{Con}(\theta),$$

where $\psi \wedge \operatorname{Con}(\psi) \vdash \operatorname{Con}(\theta)$ because: ψ implies χ instantiated at ψ ; together with $\operatorname{Con}(\psi)$, this implies $\operatorname{Con}(\theta)$.

- **→** → **→**

The theorem shows the hierarchy is tight between levels 0 and 1. Now we would like to generalize this result into the transfinite.

Definition (informal)

•
$$\operatorname{Con}^0(\varphi) = \exists$$

•
$$\mathsf{Con}^{lpha+1}(arphi) = \mathsf{Con}(arphi \wedge \mathsf{Con}^{lpha}(arphi)),$$

•
$$\operatorname{Con}^{\lambda}(\varphi) = \forall \alpha < \lambda \operatorname{Con}^{\alpha}(\varphi)$$
 for limit λ .

The rigorous definition requires the fixed point lemma and an elementary presentation (within EA) of the ordinal.

- 4 同 6 4 日 6 4 日 6

Background	Main Results	Limitations	Further Questions	Bibliography
	0000000000			
Generaliz	vation into the	Transfinite		

Theorem

Suppose f is monotonic, α is fixed. If for all φ we have: $f(\varphi)$ strictly implies $\varphi \wedge \operatorname{Con}^{\beta}(\varphi)$ for all $\beta < \alpha$, if $[f(\varphi)] \neq [\bot]$; and $\varphi \wedge \operatorname{Con}^{\alpha}(\varphi)$ implies $f(\varphi)$. Then f and $\operatorname{Con}^{\alpha} \wedge \operatorname{Id}$ agrees cofinally, i.e. for every true φ there is a true $\theta \vdash \varphi$ such that $[f(\theta)] = [\theta \wedge \operatorname{Con}^{\alpha}(\theta)]$.

Corollary

There is no monotonic function strictly above every $\operatorname{Con}^{\beta} \wedge \operatorname{Id}$ (for $\beta < \alpha$) and strictly below $\operatorname{Con}^{\alpha} \wedge \operatorname{Id}$ (except on [\bot]).

So the hierarchy is tight.

- 同 ト - ヨ ト - - ヨ ト

Background	Main Results	Limitations	Further Questions	Bibliography
000000	00000000000	00	0	0000
Generaliz	ation into the	Transfinite		

Proof (Sketch)

We want to replicate the proof for the base case. One important technique is Schmerl's reflexive transfinite induction, i.e.

 $\mathsf{EA} \vdash \forall \alpha (\mathsf{Pr}(\forall \beta < \alpha \mathcal{A}(\beta)) \to \mathcal{A}(\alpha)) \text{ implies } \mathsf{EA} \vdash \forall \alpha \mathcal{A}(\alpha).$

It follows from Löb's theorem and simplifies induction with Con^{α} . Here are some important modifications:

- $\operatorname{Con}^{\alpha}$ is monotonic: Induct.
- Con^α(φ) implies Con^α(φ ∧ ¬f(φ)): might not be true in general, but can relativize to a true cone θ_α defined inductively.

(同) (ヨ) (ヨ)

Background	Main Results	Limitations	Further Questions	Bibliography
000000	000000€000	00	0	0000
Inevitable	e Iterates			

Say a function is Π_k^0 if for all φ , $f(\varphi)$ is Π_k^0 .

Theorem

Suppose f is monotonic and Π_1^0 , fix α . If f is below $\operatorname{Con}^{\alpha} \wedge \operatorname{Id}$, then $f \wedge \operatorname{Id}$ agrees with some $\operatorname{Con}^{\beta} \wedge \operatorname{Id}$ somewhere, for some $\beta \leq \alpha$. Namely, there exists $\beta \leq \alpha$ and some φ such that

$$[\varphi \wedge f(\varphi)] = [\varphi \wedge \mathsf{Con}^{\beta}(\varphi)] \neq [\bot].$$

If α is finite, we can drop the Π_1^0 assumption.

Background	Main Results	Limitations	Further Questions	Bibliography
000000	00000000●00	00	0	0000
Inevitable	Iterates			

Proof (Sketch)

(1) When $\alpha = n$ is finite: suppose towards a contradiction that this is false. Let $g = f \wedge \text{Id}$. Let φ_1 be the conjunction of: $\forall \xi(\text{Con}(\xi) \to \text{Con}(\xi \wedge \neg g(\xi)));$ and $\forall k \forall \xi(\text{Con}^{k+1}(\xi) \to \neg \text{Pr}(g(\xi) \leftrightarrow (\xi \wedge \text{Con}^k(\xi)))).$ Extend to a sequence: $\varphi_{k+1} := \varphi_k \wedge (g(\varphi_k) \to \text{Con}^k(\varphi_k)).$ One can show that $\varphi_k \wedge \text{Con}^k(\varphi_k) \vdash \text{Con}^k(\varphi_{k+1}).$ Then f and $\text{Con}^n \wedge \text{Id}$ agrees on φ_{n+1} .

(2) For the transfinite case, we need definitions for the limit stages. To this end, we need to have truth predicates uniformly applicable to all φ_{α} . Requiring f to be Π_1^0 controls the complexity of φ_{α} , i.e. Π_2^0 , giving us a viable truth predicate.

Background	Main Results	Limitations	Further Questions	Bibliography
000000	000000000000	00	0	0000
Resolving	r Part (i)			

In fact, part (i) of the Conjecture is true when we restrict to Π_k functions, even if we switch to more general base theories:

Theorem

S.

Let T be an effectively axiomatizable, sound extension of EA, and f be a Π_k monotonic function (for some k). Then either: (1) $\varphi \vdash f(\varphi)$ on a true cone, or (2) $\varphi \land f(\varphi) \vdash \text{Con}(\varphi)$ on a true cone.

Background	Main Results	Limitations	Further Questions	Bibliography
000000	000000000000	00	0	0000
Resolving	g Part (i)			

In fact, part (i) of the Conjecture is true when we restrict to Π_k functions, even if we switch to more general base theories:

Theorem

Let *T* be an effectively axiomatizable, sound extension of EA, and *f* be a Π_k monotonic function (for some *k*). Then either: (1) $\varphi \vdash f(\varphi)$ on a true cone, or (2) $\varphi \land f(\varphi) \vdash \text{Con}(\varphi)$ on a true cone.

Proof

Consider the (informal) sentence: $A := \forall x(f(x) \to \text{Con}(x))$. If A is false, then $f(\bot)$ is true by extensionality, so the cone $\{\varphi | \varphi \vdash f(\bot)\}$ witnesses (1), using $\bot \to \varphi$ and monotonicity. Otherwise, A is true. We claim that $\{\varphi | \varphi \vdash A\}$ witnesses (2). This follows immediately by instantiating A at φ .

(人口) アイロン (日)

Background	Main Results	Limitations	Further Questions	Bibliography
000000	000000000●	00	0	0000
Resolving F	Part (i)			

Proof (Continued)

To make the proof fully rigorous, we need to modify our definition of A. First, notice T has the same Σ_1 consequences as true arithmetic. Hence, we have a Σ_1 definition of G(x, y), the graph relation of f, in T. Now define A as:

$\forall x \forall y ((G(x, y) \land \operatorname{True}_{\prod_k}(y)) \rightarrow \operatorname{Con}(x))$

The rest of the argument goes through.

So where did we use a "special" property of Con, in contrast to Con^2 , etc.?

Background	Main Results	Limitations	Further Questions	Bibliography
000000	000000000●	00	0	0000
Resolving F	Part (i)			

Proof (Continued)

To make the proof fully rigorous, we need to modify our definition of A. First, notice T has the same Σ_1 consequences as true arithmetic. Hence, we have a Σ_1 definition of G(x, y), the graph relation of f, in T. Now define A as:

$$\forall x \forall y ((G(x, y) \land \operatorname{True}_{\Pi_k}(y)) \to \operatorname{Con}(x))$$

The rest of the argument goes through.

So where did we use a "special" property of Con, in contrast to Con^2 , etc.?

Answer: "By extensionality" required us to know $\neg Con(x)$ actually implies $[x] = [\bot]$, i.e. $T \vdash \neg x$. In this sense, Con is really universal.

Background	Main Results	Limitations	Further Questions	Bibliography
000000	0000000000	●0	0	0000
Next Steps				

Now we have several possible directions to proceed.

- Prove Part (ii) by showing cofinal agreement implies true cone equivalence.
- Prove Part (ii) by generalizing the proof for Part (i).
- Prove Part (i) for less computable functions.
- Prove Part (i) for non- Π_k functions.

However, all but the last approach fail. First notice that true cone equivalence implies cofinal agreement; that the intersection of a cofinal set with a true cone is still cofinal; and that different iterates of Con agree nowhere.

伺 ト イ ヨ ト イ ヨ ト

Background	Main Results	Limitations	Further Questions	Bibliography
000000	0000000000	○●	0	0000
Negative I	Results			

All results below apply to any effectively axiomatizable, sound base theory T extending EA except the first one (only stated for EA), though the proof of the first likely also works for general T.

Theorem

There is a degree-invariant cofinal c.e. set containing no true cone.

Theorem

For any α , there is a computable f which is Π_1 and monotonic, but $f \wedge Id$ agrees cofinally with both Con $\wedge Id$ and Con^{α} $\wedge Id$.

Theorem

There is a limit computable (i.e. $\leq_T 0'$) f which is Π_1 and monotonic, but $f \wedge Id$ agrees cofinally with both Id and Con $\wedge Id$.

As a corollary, cofinal agreement is not transitive.

Background	Main Results	Limitations	Further Questions	Bibliography
000000	0000000000	00	●	0000
Further Que	estions			

- Generalizing Part (i) to non- Π_k functions.
- Analog of AD?
- An alternative notion stronger than cofinal agreement yet weaker than true cone equivalence?

同 ト イ ヨ ト イ ヨ ト

Background	Main Results 0000000000	Limitations 00	Further Questions 0	Bibliography ●●●○
Biblio	graphy I			
[1]	Uri Andrews and	Andrea Sorbi.	"Effective inseparability	<i>ι</i> ,

- Uri Andrews and Andrea Sorbi. "Effective inseparability, lattices, and preordering relations". In: *Rev. Symb. Log.* 14.4 (2021), pp. 838–865. ISSN: 1755-0203. DOI: 10.1017/S1755020319000273. URL: https://doi.org/10.1017/S1755020319000273.
- Uri Andrews et al. "On the structure of the degrees of relative provability". In: *Israel J. Math.* 207.1 (2015), pp. 449–478.
 ISSN: 0021-2172. DOI: 10.1007/s11856-015-1182-8. URL: https://doi.org/10.1007/s11856-015-1182-8.
- [3] Lev D. Beklemishev. "Provability algebras and proof-theoretic ordinals. I". In: Ann. Pure Appl. Logic 128.1-3 (2004), pp. 103-123. ISSN: 0168-0072. DOI: 10.1016/j.apal.2003.11.030. URL: https://doi.org/10.1016/j.apal.2003.11.030.

4 3 5 4 3 5

Background	Main Results	Limitations	Further Questions	Bibliography
000000	0000000000	00	0	●●●○
Bibliography	y II			

- [4] Sy-David Friedman, Michael Rathjen, and Andreas Weiermann. "Slow consistency". In: Ann. Pure Appl. Logic 164.3 (2013), pp. 382–393. ISSN: 0168-0072. DOI: 10.1016/j.apal.2012.11.009. URL: https://doi.org/10.1016/j.apal.2012.11.009.
- [5] Antonio Montalbán and James Walsh. "On the Inevitability of the Consistency Operator". In: *The Journal of Symbolic Logic* 84.1 (2019), pp. 205–225. DOI: 10.1017/jsl.2018.65. URL: https://doi.org/10.1017%2Fjsl.2018.65.
- [6] Ulf R. Schmerl. "A fine structure generated by reflection formulas over primitive recursive arithmetic". In: Logic Colloquium '78 (Mons, 1978). Vol. 97. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam-New York, 1979, pp. 335–350.

Background	Main Results	Limitations	Further Questions	Bibliography
000000	0000000000	00	0	●●●○
Bibliograph	y III			

- James Walsh. "A note on the consistency operator". In: Proc. Amer. Math. Soc. 148.6 (2020), pp. 2645-2654. ISSN: 0002-9939. DOI: 10.1090/proc/14948. URL: https://doi.org/10.1090/proc/14948.
- James Walsh. Evitable iterates of the consistency operator.
 2022. DOI: 10.48550/ARXIV.2202.01174. URL: https://arxiv.org/abs/2202.01174.
- James Walsh. On the Hierarchy of Natural Theories. 2021. DOI: 10.48550/ARXIV.2106.05794. URL: https://arxiv.org/abs/2106.05794.

Background	Main Results	Limitations	Further Questions	Bibliography
000000	00000000000	00	δ	0000

Thank you for listening!