
Choice problems in the eW degrees

Alice Vidrine (feat. Mariya Soskova)

13 November, 2023

University of Wisconsin Graduate Logic Seminar



Introduction: What



Problems and Weihrauch reduction

Weihrauch reduction is a way of comparing the computational strength of

various “problems”, represented as partial multifunctions on NN.

We may think of Weihrauch reduction f ≤W g as a computation of

values of f , given the ability to query g as an oracle exactly once.

Formally, we have this reduction if there are computable functionals

(Φ,Ψ) such that

1. α ∈ dom f ⇒ Φ(α) ∈ dom g

2. for any α ∈ dom f and β ∈ g(Φ(α)), we have Ψ(α, β) ∈ f (α).
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The algebras P & P♯

Define P to be P(N) equipped with a binary operation given by

AB = {n : ∃m(⟨n,m⟩ ∈ A ∧ Dm ⊆ B)}.

The algebra P♯ is the substructure of P consisting of the c.e. sets. The

elements of P♯ are alo called enumeration operators.

Dana Scott proved in [Scott, 1976] that both these algebras can interpret

the untyped lambda calculus or Schönfinkel/Curry’s combinator calculus.
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eW -problems and eW -reductions

An eW -problem is a partial multifunction from P to itself. Given

problems f , g , we say that f ⩽eW g if there are enumeration operators

Γ,∆ such that

1. if A ∈ dom f then ΓA ∈ dom g ,

2. and for any A ∈ dom f and X ∈ g(ΓA), ∆(A,X ) ∈ f (A).

In other words, eW -reduction is just Weihrauch reduction where the

problems operate on P, and enumeration reduction (i.e. the action of

elements in P♯) is our notion of computation.
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Introduction: Why



Why formulate the notion of eW -reduction?

First, enumeration operators have a robust computational structure, and

their use to study problems-as-multifunctions is intrinsically interesting.

Moreover, it’s a notion of computation that works on positive

information, potentially making some different distinctions between

common problems.
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Why formulate the notion of eW -reduction?

Second, they are related to an under-studied realizability topos.

• A topos is a category theoretic model of a kind of intuitionistic set

theory. Realizability toposes are built from a model of computation

(see [van Oosten, 2008] for an overview of the area).

• There is a realizability topos where the underlying model of

computation is enumeration reduction—the topos RT(P,P♯).

• There is a strong relationship between DeW and subtoposes of

RT(P,P♯) (see [Kihara, 2023]).
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Basic results about eW -reduction



The eW degrees extend the Weihrauch

Proposition. There is an embedding of the Weihrauch degrees into the

eW degrees.

Proof sketch.

• Using the injective function gr : NN → P(N), replace a Weihrauch

problem f with f̃ so that gr(α) ∈ f̃ (gr(β)) iff α ∈ f (β).

• We can replace each Turing functional in a reduction f ≤W g with

enumeration operators that witness f̃ ⩽eW g̃ . (Think about the

graph of the computable function ω<ω → ω<ω that defines the

functional.)

• Now we want f̃ ⩽eW g̃ to imply f ≤W g . Given an enumeration

operator Γ, we may pick a computable enumeration γ of Γ and

define a functional Φ such that Φ(α)(n) is found by searching longer

and longer portions of γ and α to find when Γ(gr(α)) outputs a pair

⟨n, k⟩.
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The eW degrees extend the Weihrauch

This mapping is not surjective.

Let g :⊆ P ⇒ P have domain consisting of a single 1-generic G , to which

every element of P is a solution. Suppose that there is a Weihrauch

problem f with g ≡eW f̃ .

Since G is quasi-minimal, and every element in the domain of f̃ is total,

Γ : dom g → dom f̃ occurring in a reduction g ⩽eW f̃ must send G to a

computable element.

But now a reduction f̃ ⩽eW g must send that computable element of

dom f̃ to G , requiring G to be a c.e. set, contradicting 1-genericity.
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The problem id

Definition. The problem id is the identity function on P.

Proposition.

1. f ⩽eW id if and only if there is an enumeration operator Γ such that

for all A ∈ dom f , ΓA ∈ f (A).

2. id ⩽eW f if and only if f has a c.e. instance.

Proof.

1. Let the reduction be witnessed by (Γ,∆); then ∆(A, ΓA) ∈ f (A) and

can be coded by a single enumeration operator.

2. ∅ is an id-instance, so if (Γ,∆) witness a reduction, Γ∅ must be a

(c.e.) f -instance.
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Closed choice problems

Definition. A computable metric space X is a separable metric space

with a listing of a dense set (pn)n∈ω such that the distance function

(n,m) → d(pn, pm) is computable.

The closed choice problem on a complete metric space X , CX :⊆ P ⇒ P,
takes an encoding of an open set with non-empty complement, and

returns (the name of) an element of that complement.
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Closed choice problems

In the Weihrauch setting, open complements of closed sets are coded by

enumerations of open balls—i.e. of pairs (n, r) representing an open ball

of radius r around pn.

In the eW setting, we may simply take the set of open balls instead of a

listing of the open balls. In the case of Baire or Cantor space, we may

equivalently represent open sets by sets of finite strings, and for N we

represent open sets by themselves.
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A first example: CP

A natural topology on P is the positive information topology: the basic

open sets are of the form Oa := {A ∈ P(N) : a ⊆ A} for a finite. (Note:

this isn’t actually a metric space.)

We may represent open sets O by a set I ⊆ N such that O =
⋃

i∈I ODi .

Proposition. CP ≡eW id .

Proof. Every closed set of P contains ∅, so the enumeration operator

coding λx .∅ computes solutions from instances.
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C− and C̃−

The eW versions of choice problems tend to fall strictly above their

Weihrauch counterparts.

For instance, C̃N <eW CN, the reduction being easy—one need only take

the graph of a function to its range, and solutions in both cases are

graphs of paths.

On the other hand, ∅ is an instance of CN, so consider two distinct

singleton closed sets A,B. Since ∅ ⊆ A,B, we must have Γ∅ ⊆ ΓA, ΓB

for any enumeration operator Γ; but the image of Γ consists of graphs of

total functions, so it has to be constant.

The arguments for CNN and C2N are similar.
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CN & UCN

The first interesting separation that develops in the eW setting concerns

CN and its restriction to singletons, UCN.

Fact. C̃N ≡eW ŨCN.

Proposition. UCN <eW CN
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CN & UCN

Proof. The reduction is immediate from the fact that unique choice is

just a restriction of closed choice.

For strictness, suppose we had a reduction CN ⩽eW UCN witnessed by

(Γ,∆). Then Γ∅ is the complement of a singleton, and for any other

A ∈ domCN, ΓA must both be the complement of a singleton, and a

superset of Γ∅. The only way this can happen is if ΓA = Γ∅, meaning Γ

must be constant.

Now consider {k} = ∆(∅⊕ {n}), where n ∈ ΓA; then ∆({k} ⊕ {n})
must also contain k by monotonicity, and cannot be outputting any

subset of {k}.
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Commentary

In general, we think of instances and solutions as codes for elements of

mathematical objects (e.g. points in spaces, or closed sets of topologies).

Here we see a substantial difference in behavior depending on what

information our codes contain—positive and negative information, or just

positive.

I don’t know what this means, but it’s pretty cool.
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C2N and WKL

We have C̃2N ≡eW W̃KL as a standard result from the Weihrauch

degrees. With positive and negative information, these are two different

representations of the same thing.

On the other hand,

Proposition. C2N |eW WKL
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C2N and WKL

Proof. Suppose in each case below that (Γ,∆), towards a contradiction,

witnesses the specified reduction.

1. (C2N ̸⩽eW WKL). Consider the set Γ∅ (∅ coding the full closed set

of Cantor space). Then Γ∅ is an infinite c.e. tree, such that for any

C2N-instance C we have Γ∅ ⊂ ΓC . So there is a 0′′-computable

path P such that ∆(C ⊕ P) ∈ C2N(C ) for any C ∈ domC2N .

Now let C be the complement of a 0′′-computable tree with no

0′′-computable paths. Then ∆(C ⊕ P) ≤e C ⊕ P ≤T 0′′. Since

∆(C ⊕ P) is a total object (elements of Cantor space are total

functions), this makes it 0′′-computable, which is impossible if

(Γ,∆) is a reduction.
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C2N and WKL

Proof. Suppose in each case below that (Γ,∆), towards a contradiction,

witnesses the specified reduction.

2. (WKL ̸⩽eW C2N). Consider the full tree T = 2<ω, and the closed set

ΓT . Again, ΓT , as a set of strings coding the complement of a

closed set, is c.e., so the closed set in question is Π0
1; moreover, it’s

a subset of every other closed set in the image of Γ.

So we fix a ∆0
2 element P ∈ ΓT . Now choose a ∆0

2 tree T with no

∆0
2 paths, and proceed as above.

In fact, for very simlar reasons, we even have WKL |eW CNN !
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Commentary

We’ve now seen that we can see that an equivalence from the Weihrauch

setting may break down in both directions, or only one.

The trend in these proofs of exploiting ⊆-monotonicity of enumeration

operators is common to many proofs in the setting.
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Some generalities about WKL & closed choice

WKL can’t reduce to any closed choice problem. We can generalize

the previous instances. This plays on the fact that the set of all trees has

a largest element under inclusion, and we can make trees of any

complexity with even more complex paths.

No problem to which every instance has a computable solution can

compute WKL. The existence of computable trees T with no

computable path means that any ∆(T ,A), for A computable, must fail

to be a path in such a T .

Unique choice problems are always weaker. There’s nothing special

about N in our analysis of CN and UCN.
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The many questions remaining



Questions about the W /eW relationship

Are the Weihrauch and eW degrees non-isomorphic? Is there a

first order difference between them?

In the Weihrauch degrees id is definable as the greatest strong minimal

cover, and the degrees below id are isomorphic to the Medvedev degrees.

The eW degrees below the identity are isomorphic to the Dyment

degrees. If id is also the greatest strong minimal cover here, we have a

first order difference; but it’s not clear that a similar proof works.
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Questions coming from the topos

The typical representations of certain spaces in the style of the

(enumeration) Weihrauch degrees do not necessarily correspond to the

versions of these spaces internal to RT(P,P♯).

Do the proper internal versions have a natural mathematical

meaning? How strong are the problems involving them?
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Questions coming from the topos

Weihrauch problems typically come from maps between represented

spaces, which are pairs (X , δX ) where δX : A → X is a partial surjection

from some sort of computational space (e.g. Baire space or P) that we
think of as providing “names” for elements of X .

We obtain a “name version” of a problem f :⊆ (X , δX ) ⇒ (Y , δY ) by

just considering δ−1
Y ◦ f ◦ δX .

We can do this because elements of the same represented space have

disjoint sets of names.
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Questions coming from the topos

Instead of assigning names via partial surjections, we could consider

(X ,⊩X ) where ⊩X ⊆ A× X is a surjective relation. (An object called an

assembly in realizability theory.)

The right notion of the “name version” of a problem changes: we must

consider both the name and the named elements together, giving us

problems of the form f ⊆ A× X ⇒ A.

Problems of this form, and the appropriate notions of reduction, were

first studied in detail by [Bauer, 2022] and extended in [Kihara, 2023]

and [Kihara, 2022] (arXiv preprint).
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Questions coming from the topos

As oracles, we may think of an extended problem f :⊆ A× X ⇒ A as

computations in which we may query f about some element in A, but in

which an omniscient advisor chooses a secret input from X to improve

our chances of computing correctly.

What does the landscape of the eW problems look like within this

extended setting?
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Questions coming from the topos

An example class of problems coming from RT(P,P♯) is the following.

Let p ⊆ P, and define the problem p⇒ as follows:

• Domain: {(A | q) ∈ P× P(P) : (∀B ∈ p)(AB ∈ q)}
• Solutions: p⇒(A|q) = q

This corresponds to forcing the truth value represented by p in RT(P,P♯)

to be true. As an oracle, it corresponds to computations in which we

have access to a “phantom element of p.”

Where do various natural problems fall in relation to those of the

form p⇒?
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Hybrid questions

We may even use this expanded notion of problem to add new

refinements of known problems. Here’s a nonce example, WKL/

• domWKL/ is the set of pairs (T |σ) where T is an infinite tree and

σ is an initial segment of a path through T .

• WKL/(T |σ) is a path in T with initial segment σ.

As an oracle, this corresponds to being able to query WKL, with the aid

of an omniscient advisor who can prune all of the tree except for the

branch starting with σ.

Are there problems that turn out to be “more related” considering

these extended problems? (E.g. are there problems incomparable to

WKL that are comparable to WKL/?)
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Thanks!
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