Prologue	Polish Groups	Vaught's Conjecture

Topological Vaught Conjecture

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

When Models became Polish An introduction to the Topological Vaught Conjecture

Antonio Nakid Cordero

Graduate Logic Seminar University of Wisconsin-Madison September 26, 2022 Polish Groups

Prologue

00000

Vaught's Conjecture

Topological Vaught Conjecture

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prologue The Continuum Hypothesis

 Prologue
 Polish Groups
 Vaught's Conjecture
 Topological Vaught Conjecture

 0000
 0000
 00000000
 00000000

Continuum Hypothesis (CH)

Every set of reals $A \subseteq \mathbb{R}$ is either countable or $|A| = |\mathbb{R}|$.

Cantor's approach: prove it for simple sets and work your way towards more complicated sets.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prologue	Polish Groups	Vaught's Conjecture	Topological Vaught Conjecture
00●00	0000	00000000	
Polish Sr			

Definition

A *Polish space* is a completely metrizable separable topological space.

Examples: $2^{\omega}, \omega^{\omega}, [0, 1]^{\omega}, \mathbb{R}^n, \dots$

Definition

A Polish space X is *perfect* if it contains no isolated points.

Theorem

The Cantor space 2^{ω} embeds into any nonempty perfect Polish space.

Prologue 000●0 Polish Groups

Vaught's Conjecture

Topological Vaught Conjecture

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Perfect Set Property

Definition

A Polish space X has the *perfect set property* if it is either countable or contains a perfect subset. In particular, X is not a counterexample of the CH.

Theorem (Cantor-Bendixon)

Every Polish space can be written uniquely as $P \cup C$, where P is perfect and C is countable.

In particular, G_{δ} and F_{σ} subsets of a Polish space are not satisfy CH.

Prologue 0000●

More complicated sets...

Theorem (Hausdorff, Alexandrov 1916)

Every Borel subset of a Polish space has the perfect set property.

Definition

A subset A of a Polish space X is analytic (or Σ_1^1) if there is a Polish space Y and a continuous function $f: Y \to X$ such that f[X] = A.

Theorem (Suslin 1917)

Every analytic subset of a Polish space has the perfect set property.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Part 0 Polish Groups

Prologue	Polish Groups	Vaught's Conjecture	Topological Vaught Conjecture
00000	0000	00000000	
Polish Gro	oups		

A group G endowed with a topology that makes the map

$$(x,y) \mapsto xy^{-1}$$

continuous is a topological group. If the topology is Polish, we call G a *Polish group*.

Example

 $S_\infty,$ the symmetric group on $\omega,$ with the topology inherited from ω^ω is a Polish group.

Moreover, the closed subgroups of S_∞ are exactly the automorphism groups of countably infinite structures in a countable relational language.

Prologue 00000	Polish Groups ००●०	Vaught's Conjecture	Topological Vaught Conjecture
Polish G-s	spaces		

If G is a Polish group, X is a Polish space, and $a: G \times X \to X$ is a continuous group action, we say that X is a *Polish G-space*.

Example

Let $\mathcal{L} = \{R_i\}_{i \in I}$ be a countable relational language where R_i is $n_i\text{-}\mathrm{ary.}$ Then,

$$Mod_{\mathcal{L}} = \prod_{i \in I} 2^{\omega^{n_i}}$$

is the space of countably infinite structures in the language \mathcal{L} (each $x \in Mod_{\mathcal{L}}$ is the atomic diagram of a structure \mathcal{A}_x with universe ω).

The logic action $J_{\mathcal{L}}$ of S_{∞} on $Mod_{\mathcal{L}}$ is defined by

$$J_{\mathcal{L}}(g,x) = y$$
 if and only if $\mathcal{A}_x \cong \mathcal{A}_y$

 $J_{\mathcal{L}}$ is continuous, which makes $Mod_{\mathcal{L}}$ a Polish S_{∞} -space.

Prologue 00000	Polish Groups 000●	Vaught's Conjecture	Topological Vaught Conjecture
Silver & Ru	radee		

Theorem (Silver 1980)

SUJ

If E is a Π_1^1 equivalence relation on a Polish space X, then X/E has the perfect set property.

Theorem (Burgess 1978)

If E is a Σ_1^1 equivalence relation on a Polish space X, then $|X/E| \leq \aleph_1$ or $|X/E| = 2^{\aleph_0}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Part 1 Vaught's Conjecture

Prologue 00000 Polish Groups

Vaught's Conjecture

Topological Vaught Conjecture

Denumerable models of complete theories

Vaught's Conjecture (1961)

Any first-order theory in a countable language has either countably-many, or 2^{\aleph_0} non-isomorphic countable models.

This is trivially true if we assume CH.

Prologue 00000 Polish Groups

Vaught's Conjecture

Topological Vaught Conjecture 0000000

Denumerable models of complete theories

Vaught's Conjecture (1961)

Any first-order theory in a countable language has either countably-many, or 2^{\aleph_0} non-isomorphic countable models.

This is trivially true if we assume CH. For a first-order theory T,

$$M_T = \{ x \in Mod_\tau \mid \mathcal{A}_x \models T \}$$

We say that T has perfectly-many models if M_T has perfectly-many orbits.

Vaught's Conjecture 2.0

Any first-order theory in a countable language has either countably-many, or perfectly-many non-isomorphic countable models.

Prologue	Polish Groups	Vaught's Conjecture	Topological Vaught Conjecture
00000	0000	00●00000	

Since M_T is Borel and the equivalence relation induced by the logic action is Σ_1^1 , Burgess theorem tells us that there are only three options: T has countably-many models, \aleph_1 but not perfectly-many, or T has perfectly-many models.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notice that Version 2.0 is absolute!

Prologue 00000	Polish Groups 0000	Vaught's Conjecture	Topological Vaught Conjecture

Since M_T is Borel and the equivalence relation induced by the logic action is Σ_1^1 , Burgess theorem tells us that there are only three options: T has countably-many models, \aleph_1 but not perfectly-many, or T has perfectly-many models.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notice that Version 2.0 is absolute!

Very soon, it became clear that this question should be investigated using the infinitary language $\mathcal{L}_{\omega_1,\omega}$.

Let \mathcal{L} be a language and κ, λ two cardinals with $\kappa \geq \lambda$. The formulas in $L_{\kappa,\lambda}$ are constructed in a similar way as first-order formulas, but we allow conjunctions and disjunctions of $< \kappa$ formulas and strings of (single) quantifiers of length $< \lambda$.

Example

- $L_{\omega,\omega}$ is the usual first-order language.
- $L_{\omega_1,\omega}$ is the language allowing countably many conjunctions and disjunctions in each formula, but using only finitely-many quantifiers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For a countable structure \mathcal{A} , and $\bar{a}, \bar{b} \in A^n$, we define

- $\bar{a} \equiv_0^n \bar{b}$ if and only if $\mathcal{A} \models \psi(\bar{a}) \leftrightarrow \psi(\bar{a})$ for every quantifier-free formula ψ .
- $\bar{a} \equiv_n^{\alpha+1} \bar{b}$ if and only if for all $c \in A$ there is a $d \in A$ such that $\bar{a}c \equiv_{\alpha}^{n+1} \bar{b}d$ and for all $d' \in A$ there exists $c' \in A$ such that $\bar{a}c' \equiv_{\alpha}^{n+1} \bar{b}d'$.

Notice that if $\alpha \geq \beta$, then \equiv_{α}^{n} refines \equiv_{β}^{n} . Moreover, there is an $\alpha < \omega_{1}$ where the relations stabilize. Since A is countable, there is an α that works globally, this is the Scott rank of \mathcal{A} , which we denote by $SR(\mathcal{A})$.

Even more, for a fixed \bar{a} , we can define its equivalence class under \equiv_{α}^{n} with a single $\mathcal{L}_{\omega_{1},\omega}$ formula $\varphi_{\bar{a},\alpha}(\bar{x})$.

Prologue 00000 Polish Groups

Scott Isomorphism Theorem

Theorem (Scott, 1965)

For every countable structure \mathcal{A} , there is an $\mathcal{L}_{\omega_1,\omega}$ sentence φ such that if \mathcal{B} is a countable structure with $\mathcal{B} \models \varphi$, then $\mathcal{A} \cong \mathcal{B}$.

We call φ the Scott sentence of \mathcal{A} . Essentially, we construct φ that says all its models have Scott rank no larger than $SR(\mathcal{A})$ and they satisfy $\varphi_{\Lambda,\alpha}$, where Λ is the empty string and $\alpha = SR(\mathcal{A})$.

 Prologue
 Polish Groups
 Vaught's Conjecture

 00000
 0000
 0000000

Topological Vaught Conjecture

Another version of Vaught's Conjecture

Vaught's Conjecture 3.0

A single $\mathcal{L}_{\omega_1,\omega}$ sentence has either countably-many or perfectly-many non-isomorphic countable models.

 Prologue
 Polish Groups
 Vaught's Conjecture

 00000
 0000
 00000000

Topological Vaught Conjecture

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Another version of Vaught's Conjecture

Vaught's Conjecture 3.0

A single $\mathcal{L}_{\omega_1,\omega}$ sentence has either countably-many or perfectly-many non-isomorphic countable models.

Theorem (Morley 1970)

Every complete theory T on a countable language has either countably-many, \aleph_1 or perfectly-many non-isomorphic countable models.

Morley's theorem is a particular case of Burgess theorem.

Prologue 00000

An interesting example

Let \mathcal{L}_0 be the language with one binary relational symbol. Then, the class of countable ordinals has \aleph_1 isomorphism types, but not perfectly-many.

So, the analog of Vaught's Conjecture for theories in $\mathcal{L}_{\omega_1,\omega}$, and for sentences in $\mathcal{L}_{\omega_1,\omega_1}$ and $\mathcal{L}_{\omega_2,\omega}$ are false. In each of this cases, we can construct a theory of sentence whose models are exactly the countable ordinals.

Polish Groups

Topological Vaught Conjecture •000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Part 2 Topological Vaught Conjecture

 Prologue
 Polish Groups
 Vaught's Conjecture
 Topological Vaught Conjecture

 0000
 0000
 000000
 000000

We mentioned that the models of a single sentence $\varphi \in \mathcal{L}_{\omega_1,\omega}$ form a Borel subset of $Mod_{\mathcal{L}}$ invariant under the logic action. The converse is also true:

Theorem (López-Escobar)

If $B \subseteq Mod_{\mathcal{L}}$ is Borel and invariant under the logic action, there is an $\mathcal{L}_{\omega_1,\omega}$ sentence such that $B = \{x \in Mod_{\mathcal{L}} \mid \mathcal{A}_x \models \varphi\}.$

This suggests a different phrasing for Version 3.0 of Vaughts Conjecture:

Vaught's Conjecture Version 3.1

Let \mathcal{L} be a countable language. For any $B \subseteq Mod_{\mathcal{L}}$ Borel and invariant under the logic action, the set of orbits of B has the perfect set property.

 Prologue
 Polish Groups
 Vaught's Conjecture
 Topological Vaught Conjecture

 00000
 00000000
 00000000

Infinitely-many new conjectures!

Let G be any Polish group. A Borel G-space X is a standard Borel space with an action that is Borel-measurable.

Topological Vaught's Conjectures (D.E. Miller 1980)

- **TVC1(G):** For any Polish *G*-space *X*, *X* has countably-many or perfectly-many orbits.
- **TVC2(G):** For any Polish *G*-space *X*, and any Borel invariant set *B* ⊂ *X*, *B* has countably-many or perfectly-many orbits.
- **TVC3(G)**: For any Borel *G*-space *X*, *X* has countably-many or perfectly-many orbits.

$TVC3(G) \implies TVC2(G) \implies TVC1(G)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prologue 00000	Polish Groups 0000	Vaught's Conjecture	Topological Vaught Conjecture
But not real	ly		

Theorem

For any Polish group G,

$TVC1(G) \implies TVC3(G)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Prologue	Polish Groups	Vaught's Conjecture	Topological Vaught Conjecture
00000	0000	00000000	
But not real	ly		

Theorem

For any Polish group G,

$TVC1(G) \implies TVC3(G)$

One final restatement

Topological Vaught Conjecture

Let $B \subset X$ be a Borel subset of a Polish space, and let $G: G \times B \to B$ a Borel-measurable action. The action has either countably-many or perfectly-many orbits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Prologue	Polish Groups	Vaught's Conjecture	Topological Vaught Conjecture
00000	0000	00000000	
Is that even	my final form?		

- If we change Borel for analytic, the conjecture is false. (order-types of ordered abelian groups)
- If we change Borel for coanalytic, the conjecture is false. (countable ordinals)
- If we change Borel-measurable for *σ*-algebra containing analytic sets, we have a counterexample.
- If we change Polish for any natural extension, there are counterexamples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Prologue	Polish Groups	Vaught's Conjecture	Topological Vaught Conjecture
00000	0000		00000●0
Yes it is			

Theorem

The Topological Vaught Conjecture is equivalent to Vaught's Conjecture Version 3.0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

gue	Polish

Prolog 0000 Topological Vaught Conjecture

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The End