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The Continuum Hypothesis
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The Continuum Hypothesis

Continuum Hypothesis (CH)

Every set of reals A ⊆ R is either countable or |A| = |R|.

Cantor’s approach: prove it for simple sets and work your way
towards more complicated sets.
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Polish Spaces

Definition

A Polish space is a completely metrizable separable topological
space.

Examples: 2ω, ωω, [0, 1]ω,Rn,...

Definition

A Polish space X is perfect if it contains no isolated points.

Theorem

The Cantor space 2ω embeds into any nonempty perfect Polish
space.
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The Perfect Set Property

Definition

A Polish space X has the perfect set property if it is either
countable or contains a perfect subset. In particular, X is not a
counterexample of the CH.

Theorem (Cantor-Bendixon)

Every Polish space can be written uniquely as P ∪ C, where P is
perfect and C is countable.

In particular, Gδ and Fσ subsets of a Polish space are not satisfy
CH.
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More complicated sets...

Theorem (Hausdorff, Alexandrov 1916)

Every Borel subset of a Polish space has the perfect set property.

Definition

A subset A of a Polish space X is analytic (or Σ1
1) if there is a

Polish space Y and a continuous function f : Y → X such that
f [X] = A.

Theorem (Suslin 1917)

Every analytic subset of a Polish space has the perfect set property.
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Part 0
Polish Groups
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Polish Groups

A group G endowed with a topology that makes the map

(x, y) 7→ xy−1

continuous is a topological group. If the topology is Polish, we call
G a Polish group.

Example

S∞, the symmetric group on ω, with the topology inherited from
ωω is a Polish group.

Moreover, the closed subgroups of S∞ are exactly the
automorphism groups of countably infinite structures in a
countable relational language.
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Polish G-spaces

If G is a Polish group, X is a Polish space, and a : G×X → X is
a continuous group action, we say that X is a Polish G-space.

Example

Let L = {Ri}i∈I be a countable relational language where Ri is
ni-ary. Then,

ModL =
∏
i∈I

2ω
ni

is the space of countably infinite structures in the language L
(each x ∈ModL is the atomic diagram of a structure Ax with
universe ω).
The logic action JL of S∞ on ModL is defined by

JL(g, x) = y if and only if Ax ∼= Ay

JL is continuous, which makes ModL a Polish S∞-space.
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Silver & Burgess

Theorem (Silver 1980)

If E is a Π1
1 equivalence relation on a Polish space X, then X/E

has the perfect set property.

Theorem (Burgess 1978)

If E is a Σ1
1 equivalence relation on a Polish space X, then

|X/E| ≤ ℵ1 or |X/E| = 2ℵ0
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Part 1
Vaught’s Conjecture
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Denumerable models of complete theories

Vaught’s Conjecture (1961)

Any first-order theory in a countable language has either
countably-many, or 2ℵ0 non-isomorphic countable models.

This is trivially true if we assume CH.

For a first-order theory T ,

MT = {x ∈Modτ | Ax |= T}

We say that T has perfectly-many models if MT has
perfectly-many orbits.

Vaught’s Conjecture 2.0

Any first-order theory in a countable language has either
countably-many, or perfectly-many non-isomorphic countable
models.
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Since MT is Borel and the equivalence relation induced by the
logic action is Σ1

1, Burgess theorem tells us that there are only
three options: T has countably-many models, ℵ1 but not
perfectly-many, or T has perfectly-many models.

Notice that Version 2.0 is absolute!

Very soon, it became clear that this question should be
investigated using the infinitary language Lω1,ω.
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Infinitary Logic Lκ,λ

Let L be a language and κ, λ two cardinals with κ ≥ λ. The
formulas in Lκ,λ are constructed in a similar way as first-order
formulas, but we allow conjunctions and disjunctions of < κ
formulas and strings of (single) quantifiers of length < λ.

Example

Lω,ω is the usual first-order language.
Lω1,ω is the language allowing countably many conjunctions
and disjunctions in each formula, but using only finitely-many
quantifiers.
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Back-and-Forth relations

For a countable structure A, and ā, b̄ ∈ An, we define

ā ≡n0 b̄ if and only if A |= ψ(ā)↔ ψ(ā) for every
quantifier-free formula ψ.

ā ≡α+1
n b̄ if and only if for all c ∈ A there is a d ∈ A such that

āc ≡n+1
α b̄d and for all d′ ∈ A there exists c′ ∈ A such that

āc′ ≡n+1
α b̄d′.

Notice that if α ≥ β, then ≡nα refines ≡nβ. Moreover, there is an
α < ω1 where the relations stabilize. Since A is countable, there is
an α that works globally, this is the Scott rank of A, which we
denote by SR(A).

Even more, for a fixed ā, we can define its equivalence class under
≡nα with a single Lω1,ω formula ϕā,α(x̄).
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Scott Isomorphism Theorem

Theorem (Scott, 1965)

For every countable structure A, there is an Lω1,ω sentence ϕ such
that if B is a countable structure with B |= ϕ, then A ∼= B.

We call ϕ the Scott sentence of A. Essentially, we construct ϕ
that says all its models have Scott rank no larger than SR(A) and
they satisfy ϕΛ,α, where Λ is the empty string and α = SR(A).
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Another version of Vaught’s Conjecture

Vaught’s Conjecture 3.0

A single Lω1,ω sentence has either countably-many or
perfectly-many non-isomorphic countable models.

Theorem (Morley 1970)

Every complete theory T on a countable language has either
countably-many, ℵ1 or perfectly-many non-isomorphic countable
models.

Morley’s theorem is a particular case of Burgess theorem.
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An interesting example

Let L0 be the language with one binary relational symbol. Then,
the class of countable ordinals has ℵ1 isomorphism types, but not
perfectly-many.

So, the analog of Vaught’s Conjecture for theories in Lω1,ω, and
for sentences in Lω1,ω1 and Lω2,ω are false. In each of this cases,
we can construct a theory of sentence whose models are exactly
the countable ordinals.
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Part 2
Topological Vaught Conjecture
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A shift in perspective

We mentioned that the models of a single sentence ϕ ∈ Lω1,ω form
a Borel subset of ModL invariant under the logic action. The
converse is also true:

Theorem (López-Escobar)

If B ⊆ModL is Borel and invariant under the logic action, there is
an Lω1,ω sentence such that B = {x ∈ModL | Ax |= ϕ}.

This suggests a different phrasing for Version 3.0 of Vaughts
Conjecture:

Vaught’s Conjecture Version 3.1

Let L be a countable language. For any B ⊆ModL Borel and
invariant under the logic action, the set of orbits of B has the
perfect set property.
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Infinitely-many new conjectures!

Let G be any Polish group. A Borel G-space X is a standard Borel
space with an action that is Borel-measurable.

Topological Vaught’s Conjectures (D.E. Miller 1980)

TVC1(G): For any Polish G-space X, X has countably-many
or perfectly-many orbits.
TVC2(G): For any Polish G-space X, and any Borel invariant
set B ⊂ X, B has countably-many or perfectly-many orbits.
TVC3(G): For any Borel G-space X, X has countably-many
or perfectly-many orbits.

TVC3(G) =⇒ TVC2(G) =⇒ TVC1(G)



Prologue Polish Groups Vaught’s Conjecture Topological Vaught Conjecture

But not really...

Theorem

For any Polish group G,

TVC1(G) =⇒ TVC3(G)

One final restatement

Topological Vaught Conjecture

Let B ⊂ X be a Borel subset of a Polish space, and let
G : G×B → B a Borel-measurable action. The action has either
countably-many or perfectly-many orbits.
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Is that even my final form?

If we change Borel for analytic, the conjecture is false.
(order-types of ordered abelian groups)

If we change Borel for coanalytic, the conjecture is false.
(countable ordinals)

If we change Borel-measurable for σ-algebra containing
analytic sets, we have a counterexample.

If we change Polish for any natural extension, there are
counterexamples.
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Yes, it is.

Theorem

The Topological Vaught Conjecture is equivalent to Vaught’s
Conjecture Version 3.0
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The End
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