
HOMOLOGICAL ALGEBRA (MATH 750)

PROBLEMS AND EXERCISES

Conventions

The problems below come in three types: Exercises, Problems, and Challenges.
Exercises are supposed to be relatively straightforward, but could be techni-

cal. Typically, they would involve verification of some properties that I consider
important, but insufficiently interesting for the class. They are also supposed to
make sure that you are capable of operating with the ideas of this class. If you are
convinced that you understand what is involved in an exercise, there is probably
no reason to work out all the details (but you’d better be sure!). On the other
hand, if you don’t see how to solve an exercise, it is a sign that you may be missing
something important, and you should ask about this as soon as possible. Please do
not hand the exercises in.

Problems are supposed to be more enlightening, and appropriate as homework
problems. (Although I have not decided what fraction of them to assign.)

Challenges are questions that I am not sure one can answer with information
available at this point. Privately, I think of Challenges as problems of ‘Chuck
Norris’ difficulty. It still may be a good idea to try them out, if only to understand
why they are hard (or perhaps to find out that I am missing something simple and
they are not hard at all!) If you know more advanced homological algebra (that is,
some of the things that were not covered in class yet), you may have tools to solve
these challenges; otherwise, it may be a good idea to come back to them later in
the course.

1. Derived functors

1.1. Ext for abelian groups. By default, all ‘objects’ in this section are abelian
groups, Hom refers to the group of homomorphisms between abelian groups, etc.

Exercise 1.1.1. In class, we verified that for any M ∈ Ab, the functor Hom(M,−)
is left exact. Verify that for any N ∈ Ab, the functor Hom(−, N) is left-exact as
well.

Exercise 1.1.2. In class, we verified that for any M ∈ Vect, the functor Hom(M,−)
is exact. In other words, if

0→ N1 → N2 → N3 → 0

is a short exact sequence of vector spaces, then the induced sequence

0→ Hom(M,N1)→ Hom(M,N2)→ Hom(M,N3)→ 0

is exact as well. Verify the following equivalent formulations of this exactness:

• For any short exact sequence

N1 → N2 → N3,
1
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the sequence

Hom(M,N1)→ Hom(M,N2)→ Hom(M,N3)

is exact.
• For any complex C•, consider the complex Hom(M,C•). Then the coho-

mology spaces of these complexes are related by the functor Hom(M,−):

H•(Hom(M,C•)) = Hom(M,H•(C•)).

Exercise 1.1.3. (Requires Category Theory) Verify that the forgetful functor from
the category of Q-vector spaces Vect to the category of abelian groups Ab is fully
faithful and describe its essential image.

Problem 1.1.4. Verify that Hom(−,Z) is not exact by applying it to the short exact
sequence

0→ Z 2→ Z→ Z/2Z→ 0.

Problem 1.1.5. Show that Hom(−,Q) is exact.

Exercise 1.1.6. In class, we defined the group operation on Ext (Baer’s sum).
Rewrite the definition explicitly, without using functoriality of Ext. Verify that it
indeed gives an abelian group structure on Ext, whose zero and inversion are as
described in class.

Challenge 1.1.7. Describe the following functors on the category of abelian groups:
Ext(Q,−), Ext(−,Z/pZ) (where p is a prime), Ext(−,Z). (The goal here is to
make the answer as explicit as possible, but it is hard to get anywhere. If you
get a simple answer, you probably made a mistake. This challenge is more about
understanding why these functors are hard.)

The next four problems refer to properties of the Ext functor that are parallel
to the properties of Hom. If you have not seen the corresponding properties of the
Hom functor, you should verify them as an exercise.

Problem 1.1.8. Let M1,M2, N be abelian groups. Construct a natural isomomor-
phism

Ext(M1 ⊕M2, N) = Ext(M1, N)⊕ Ext(M2, N).

(Hint: it helps to think about the natural maps M1,2 →M1⊕M2 and M1⊕M2 →
M1,2.)

Problem 1.1.9. Dually, let M,N1, N2 be abelian groups. Construct a natural iso-
momorphism

Ext(M,N1 ⊕N2) = Ext(M,N1)⊕ Ext(M,N2).

Problem 1.1.10. More generally, let N ∈ Ab, and let Mα be a family of abelian
groups, not necessarily finite. Construct a natural isomorphism

Ext(
⊕

Mα, N) =
∏

Ext(Mα, N).

Note the direct sum on the left and the product on the right; since the family is
not assumed to be finite, these are different operations!

Remark: If you know the definition of direct/inverse limits (a.k.a. colimits/limits,
injective/projective limits), you may try generalizing this problem using (filtered)
direct and inverse limits... but it probably won’t work! Can you find a counterex-
ample? Do you see why it fails?
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Problem 1.1.11. Dually, let M ∈ Ab, and let Nα be a family of abelian groups, not
necessarily finite. Construct a natural isomorphism

Ext(M,
∏

Nα) =
∏

Ext(M,Nα).

(Now its product on both sides.)

Problem 1.1.12. Suppose M,N ∈ Abfg (recall that this means M and N are finitely
generated abelian groups). Prove that Ext(M,N) is finitely generated as well.
(Hint: This is one place where using the classification may be appropriate.)

Exercise 1.1.13. Define the connecting homomorphism between Hom and Ext in
the situation ‘dual’ to the one considered in class. Thus, if M is a module and
0→ N1 → N2 → N3 → 0 is an exact sequence, you need to construct the map

Hom(N1,M)→ Ext(N3,M).

Exercise 1.1.14. Check that the Hom/Ext long exact sequence (corresponding to
an abelian group M and a short exact sequence of abelian group) is exact. Note
that the long exact sequence comes in two flavors, so there are two independent
checks involved. The most interesting part is to check exactness at the connecting
homomorphism between Hom and Ext.

Exercise 1.1.15. Formulate and prove the functoriality property of the connecting
homomorphism.

Problem 1.1.16. Verify that for any abelian group M , Ext(−,M) is right exact.
The problem is much more interesting to solve from ‘first principles’ using only the
notion of extensions. But if you must use resolutions (i.e., the approach to Ext by
generators and relations) this is fine, too.

Challenge 1.1.17. Verify that for any abelian group M , Ext(M,−) is right exact.
(This is not hard using injective resolutions, but doing this directly in terms of
extensions requires thought.)

Exercise 1.1.18. Show that if M and N are finitely generated abelian groups, then
the groups Hom(M,N) and Ext(M,N) are finitely generated as well.

Exercise 1.1.19. Show that if M and N are abelian groups and the number k is
such that either kM = 0 or kN = 0, then kA = 0 for A = Hom(M,N) and for
A = Ext(M,N).

Problem 1.1.20. An abelian group M is projective if and only if M is free. (Note
that M is not assumed to be finitely generated.)

Problem 1.1.21. An abelian group is injective if and only if it is divisible.

Problem 1.1.22. Construct a functorial morphism

Ext(M,Z)⊗Z N → Ext(M,N)

such that if N = Z, it is the tautological map. Prove that this map is an isomor-
phism if either M or N are finitely generated. What can go wrong if both M and
N are infinitely generated?
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1.2. Homological algebra in the category of modules.

Exercise 1.2.1. Suppose R is a PID. Show that a module is projective iff it is free,
and a module is injective iff it is divisible.

Exercise 1.2.2. Describe projective and injective modules over the matrix ring
Matn(k), where k is a field.

Problem 1.2.3. Let R be a finite-dimensional algebra over the field k. Consider the
dual space

Homk(R, k) = R∨,

and turn it into a left R-module by using the right action of R on itself. Show that
the R-module R∨ is injective, that a direct sum of (possibly infinitely many) copies
of R∨ is injective, and that a module is injective iff it is a direct summand of such
a direct sum.

(Side question: is it important that R is finite-dimensional?)

Problem 1.2.4. Verify the following:

(1) The direct sum (not necessarily finite!) of modules is projective iff all
summands are projective;

(2) The Cartesian product (not necessarily finite!) of modules is injective iff
all factors are injective.

(Side question: is it true that the direct limit of projective modules is projective?)

Problem 1.2.5. Suppose f : R→ S is a morphism of rings.

(1) Show for a projective R-module M , its extension of scalars S ⊗R M is
projective as an S-module.

(2) Suppose in addition that S is flat as a right R-module. Show that an
injective S-module is also injective as an R-module.

(Side question: how to generalize this statement to a claim about behaviour of
projectivity and injectivity under adjoint functors?)

Problem 1.2.6. Suppose f : R→ S is a morphism of rings.

(1) Let M be an R-module. Consider the abelian group M ′ := HomR(S,M),
where S is viewed as a left R-module in the natural way. Turn it into a left
S-module using the right action of S on itself.

(2) Show that for every S-module N , we have an isomorphism

HomR(N,M) = HomS(N,M ′).

(3) Prove that if M is injective, then so is M ′.

Exercise 1.2.7. Show that for any additive functor ModR → Ab and any two mod-
ules M and N , the natural homomorphism

F (M)⊕ F (N)→ F (M ⊕N)

is an isomorphism.

Problem 1.2.8. Let F : ModR → Ab be an additive (covariant) functor with the
following properties:

(1) F is right exact;
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(2) F commutes with arbitrary direct sums: that is, for any collection of mod-
ules Mα, the natural map⊕

F (Mα)→ F (
⊕

Mα)

is an isomorphism.

Show that there exists a right R-module N and a functorial isomorphism

F (−) ' N ⊗R −.

Problem 1.2.9. Let F : ModR → Ab be an additive contravariant functor with the
following properties:

(1) F is left exact;
(2) F sends direct sums to direct products: that is, for any collection of modules

Mα, the natural map

F (
⊕

Mα)→
∏

F (Mα)

is an isomorphism.

Show that there exists a left R-module N and a functorial isomorphism

F (−) ' HomR(−, N).

Exercise 1.2.10. Let M be a right R-module. Prove that the following properties
are equivalent:

(1) M is flat: that is, the functor M ⊗R − is exact.

(2) TorR1 (M,−) = 0.

(3) TorRk (M,−) = 0 for all M .

Formulate and prove similar equivalences for projective and injective modules.

Problem 1.2.11. Show that M is flat if an only if Tor1(M,N) = 0 for any finitely
generated R-module N . (In fact, it suffices to assume that N is cyclic, that is,
generated by a single element.) (This problem may be harder or easier depending
on what properties of tensor product you are familiar with.)

Challenge 1.2.12. Suppose R = Z, so we work with Ab = ModR. Is it true that
M ∈ Ab is projective if and only if Ext1(M,N) = 0 for any finitely generated
abelian group N?

Exercise 1.2.13. A module M over a PID is flat if and only if M is torsion-free.

Exercise 1.2.14. Let R = Z/4Z, and consider M = Z/2Z as a R-module.

(1) Write a projective resolution of M . (Can you write an injective resolution,
while you are at it?)

(2) Compute TorRi (M,M).
(3) Compute ExtiR(M,M).

Problem 1.2.15. Suppose P• → M is a resolution of an R-module M . Recall that
the complex (P• →M) (together with the augmentation map P0 →M) is acyclic.
Show that it is null-homotopic iff M is projective. (By definition, a complex is null-
homotopic if its identity map is homotopic to the zero map; this implies acyclicity.)
(Comment: it may be worth it to look for an elegant solution.)

Exercise 1.2.16. (1) Let P• be a bounded above complex of projective R-modules.
Show that it is null-homotopic iff it is acyclic.
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(2) Let R = Z/4Z, and consider the unbounded acyclic complex of projective
modules

· · · → R→ R→ R→ . . . ,

where each map is the multiplication by 2. Show that it is not null-
homotopic (so the boundedness condition in the first part is essential).


