## A Brief Introduction to Modal Logic

Yuxiao Fu

University of Wisconsin-Madison

Logic Student Seminar, Fall 2022

Fu (UW-Madison)

A Brief Introduction to Modal Logic

Presentation

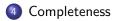
< 1 k

## Table of Contents









イロト イポト イヨト イヨト

æ

## Table of Contents









| Fu ( | (UW-Madison) |  |
|------|--------------|--|
|      |              |  |

<ロト <問ト < 目ト < 目ト

æ

Similar to first-order logic, Modal Logic can be seen as an extension to propositional logic found useful in philosophy and linguistics. The language of **basic modal logic** is given by the following grammar:

$$\varphi ::= \mathbf{p} \mid \perp \mid \neg \varphi \mid \psi \lor \varphi \mid \diamondsuit \varphi$$

where *p* ranges over a given set of propositional variables. Next to the standard Boolean abbreviations  $\top, \land, \rightarrow, \leftrightarrow$  we will also use  $\Box := \neg \diamondsuit \neg$ .

< 口 > < 同 > < 回 > < 回 > < 回 > <

# Readings

#### Examples

Modal logic can comes with different flavors depending on the reading of modal operators, three common readings are:

- Possible:  $\Diamond \varphi$  reads "It is possible that  $\varphi$ " and  $\Box \varphi$  reads "It is necessarily that  $\varphi$ ". Some truth include  $\Box \varphi \rightarrow \Diamond \varphi, \varphi \rightarrow \Diamond \varphi$ .
- ② Episemic: □  $\varphi$  reads "the agent knows that  $\varphi$ " and  $\Diamond \varphi$  reads "the agent does not know that  $\neg \varphi$ ". Note  $\varphi \rightarrow \Box \varphi$  but not conversely.
- Provable: □ φ reads "it is provable that φ" and ◊ φ reads "it is not provable that ¬φ". Löb formula states □(□ φ → φ) → □ φ.

イロト 不得 トイヨト イヨト 二日

One may generalize the basic modal logic by adding more modal operators to propositional logic:

### Definition

A **modal language**  $ML(\tau, \Phi)$  is built up using a modal similarity type  $\tau = (O, \rho)$  and a set of proposition letters  $\Phi$ , where nonempty O contains modal operators  $\Delta_i$ , and  $\rho: O \to \mathbb{N}$  assigns each  $\Delta_i$  its arity. The set Form $(\tau, \Phi)$  of **modal formulas** over  $\tau$  and  $\Phi$  is given by

$$\varphi ::= p \mid \bot \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \triangle (\varphi_1, \dots, \varphi_{\rho(\triangle)})$$

where *p* ranges over  $\Phi$  and  $\triangle$  ranges over *O*.

Denote  $\nabla (\varphi_1, \ldots, \varphi_n) \coloneqq \neg \bigtriangleup (\neg \varphi_1, \ldots, \neg \varphi_n)$  for each  $\bigtriangleup \in O$ .

イロト 不得下 イヨト イヨト 二日

# More Readings

#### Examples

- Temporal: O = {F, P}. F φ reads "φ will happen at some Future time", and P φ reads "φ happened at some Past time". Their dual G φ and H φ reads "it is always Going to be φ" and "it always Has been φ". Some truth in this logic: P φ → GP φ ("whatever has happened will always have happened") and F φ → FF φ.
- Propositional Dynamic: Each diamond has the form (π), where π is a non-deterministic program, and (π)φ means "some terminating execution of π from the present state leads to a state bearing the information φ.' The dual [π]φ states that "every execution of π from the present state leads to a state bearing the information φ".

# Kripke Models

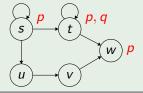
### Definition

A (Kripke) model  $\mathfrak{M} = (W, R, V)$  consists of a non-empty set W, a binary accessibility relation  $R \subseteq W^2$  and a valuation  $V \colon \Phi \to \mathcal{P}(W)$ .

The underlying relational structure  $\mathfrak{F} = (W, R)$  is a **(Kripke) frame**.

#### Examples

In the following model, 
$$W = \{s, t, u, v, w\}$$
,  
 $R = \{\langle s, s \rangle, \langle s, t \rangle, \langle t, t \rangle, \langle t, w \rangle, \langle s, u \rangle, \langle u, v \rangle, \langle v, w \rangle\}$ ,  
 $V(p) = \{s, t, w\}$  and  $V(q) = \{t\}$ .



A Brief Introduction to Modal Logic

• • • • • • • • • • •

# Kripke Semantics

## Definition

Given a model  $\mathfrak{M}$  we define the notion of a modal formula  $\varphi$  being **true** or **satisfied** in  $\mathfrak{M}$  at a world  $w \in \mathfrak{M}$ , denoted  $\mathfrak{M}, w \Vdash \varphi$ , inductively by

| $\mathfrak{M}, w \Vdash p$                         | iff | $w \in V(p)$                                                                              |
|----------------------------------------------------|-----|-------------------------------------------------------------------------------------------|
| $\mathfrak{M}, w \Vdash \perp$                     | iff | never                                                                                     |
| $\mathfrak{M}, \mathbf{w} \Vdash \neg arphi$       | iff | $\mathfrak{M}, w \not\Vdash \varphi$                                                      |
| $\mathfrak{M}, \mathbf{w}\Vdash \varphi \lor \psi$ | iff | $\mathfrak{M}, w \Vdash \varphi \text{ or } \mathfrak{M}, w \Vdash \psi$                  |
| $\mathfrak{M}, w \Vdash \diamondsuit \varphi$      | iff | $\mathfrak{M}, \mathbf{v} \Vdash \varphi$ , for some $\mathbf{v} \in W$ with <i>Rwv</i> . |

A formula  $\varphi$  is **globally true** in a model  $\mathfrak{M}$  if it is true at every  $w \in \mathfrak{M}$ , denoted  $\mathfrak{M} \Vdash \varphi$ ; and **satisfiable in**  $\mathfrak{M}$  if it is true in at least one  $w \in \mathfrak{M}$ .

| Examples                                                                |                                                                             |                     |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|
| $\mathfrak{M}, t \Vdash p \land q, \mathfrak{M}, t \Vdash \diamondsuit$ | $\triangleright$ p, $\mathfrak{M}, w \Vdash \neg q$ , and $\mathfrak{M}, w$ | ·                   |
|                                                                         | 4                                                                           |                     |
| Fu (UW-Madison)                                                         | A Brief Introduction to Modal Logic                                         | Presentation 9 / 38 |

# Satisfiability and Validity

## Definition (for Models)

A formula  $\varphi$  is **satisfiable** if it is satisfiable in some model, and **valid** if it is globally true in every model.

#### Examples

 $\Box \top$  is valid,  $\Box p \land \diamondsuit \neg p$  is never satisfiable.

### Definition (for Frames)

A formula  $\varphi$  is **valid** in  $\mathfrak{F}$  if  $\varphi$  is globally true in model  $(\mathfrak{F}, V)$  for every valuation V (denoted  $\mathfrak{F} \Vdash \varphi$ ), and **valid** in a class of frames C if  $\mathfrak{F} \Vdash \varphi$  for each  $\mathfrak{F} \in C$  (denoted  $C \Vdash \varphi$ ). A formula is **satisfiable** in  $\mathfrak{F}$  if it is satisfiable in  $(\mathfrak{F}, V)$  for some valuation V.

#### Examples

 $\mathsf{K} \Vdash \diamondsuit(p \lor q) \to (\diamondsuit p \lor \diamondsuit q), \text{ but not } \diamondsuit \Diamond p \to \diamondsuit p.$ 

## Table of Contents









| Fu ( | (UW-Madison | ) | A Brief In |
|------|-------------|---|------------|
|      |             |   |            |

A Brief Introduction to Modal Logic

Presentation

<ロト <問ト < 目ト < 目ト

Let  $\mathfrak{M}$  and  $\mathfrak{M}'$  be models of the same modal similarity type  $\tau$ , and let w and w' be states in  $\mathfrak{M}$  and  $\mathfrak{M}'$  respectively.

### Definition

The  $\tau$ -theory of w is  $\{\varphi : \mathfrak{M}, w \Vdash \varphi\}$ . w and w' are (modally) equivalent  $(w \leftrightarrow w')$  if they have the same  $\tau$ -theories.  $\mathfrak{M} \leftrightarrow \mathfrak{M}'$  is defined similarly.

## Bisimulations

Let  $\mathfrak{M} = (W, R, V)$  and  $\mathfrak{M}' = (W', R', V')$  be two models.

#### Definition

A non-empty binary relation  $Z \subseteq W \times W'$  is called a **bisimulation** between  $\mathfrak{M}$  and  $\mathfrak{M}'$  ( $Z : \mathfrak{M} \leftrightarrow \mathfrak{M}'$ ) if:

- If wZw' then w and w' satisfy the same proposition letters.
- 2 If wZw' and Rwv, there exists  $v' \in W'$  such that vZv' and R'w'v'.
- If wZw' and R'w'v', there exists  $v \in W$  such that vZv' and Rwv.

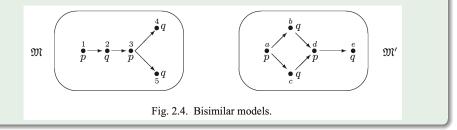
If wZw' by bisimulation Z, we say w and w' is bisimilar ( $w \leftrightarrow w'$ ).

A bisimulation is a relation between two models in which related states have identical atomic information and matching transition possibilities.

## Examples

The following two models are bisimilar by

$$Z = \{(1, a), (2, b), (2, c), (3, d), (4, e), (5, e)\}.$$



| Fu (UW-Madison) | A Brief Introduction to Modal Logic | Presentation | 14 / 38 |
|-----------------|-------------------------------------|--------------|---------|

4 日本 4 国本 4 日本 4 日本 1 日

## Invariance under Bisimulation

Let  $\tau$  be a modal similarity type, and let  $\mathfrak{M}, \mathfrak{M}'$  be  $\tau$ -models.

#### Theorem

For every  $w \in W$  and  $w' \in W'$ ,  $w \leftrightarrow w'$  implies that  $w \rightsquigarrow w'$ .

That is, modal formulas are invariant under bisimulation: modal formulas cannot distinguish between bisimilar states or between bisimilar models. This is different from first-order logic.

#### Examples

Observe that  $\mathfrak{M}', a \Vdash \varphi(a)$  but  $\mathfrak{M}, 1 \nvDash \varphi(1)$  for  $\varphi(x)$ :

 $\exists y_1y_2y_3 (y_1 \neq y_2 \land y_1 \neq y_3 \land y_2 \neq y_3 \land Rxy_1 \land Rxy_2 \land Ry_1y_3 \land Ry_2y_3).$ 

So  $\varphi$  distinguishes  $a \leftrightarrow 1$ .

イロト 不得下 イヨト イヨト 二日

The converse does not hold in general, but does for image-finite models.

## Definition

A  $\tau$ -model  $\mathfrak{M}$  is **image-finite** if for each state u and relation R, the set  $\{(v_1, \ldots, v_n) : Ruv_1 \ldots v_n\}$  is finite.

## Theorem (Hennessy-Milner)

Let  $\mathfrak{M}$  and  $\mathfrak{M}'$  be two image-finite  $\tau$ -models. Then, for every  $w \in W$  and  $w' \in W', w \leftrightarrow w'$  iff  $w \leftrightarrow w'$ 

# Finite Models

Similar to compactness of first-order logic, modal logic has finite model property (FMP). For this, one needs the notion of filtration.

## Definition

Let  $\mathfrak{M} = (W, R, V)$  be a model and  $\Sigma$  a subformula closed set of formulas. Let  $\longleftrightarrow_{\Sigma}$  be the equivalence relation on the states of  $\mathfrak{M}$  defined by:

$$w \nleftrightarrow_{\Sigma} v \text{ iff } \forall \varphi \in \Sigma : \mathfrak{M}, w \Vdash \varphi \text{ iff } \mathfrak{M}, v \Vdash \varphi.$$

Denote  $|w|_{\Sigma}$  the equivalence class of  $w \in W$ . Let  $W_{\Sigma} = \{|w|_{\Sigma} : w \in W\}$ . Suppose  $\mathfrak{M}_{\Sigma}^{f}$  is any model  $(W^{f}, R^{f}, V^{f})$  such that:

$$W^f = W_{\Sigma}.$$

**2** If *Rwv* then  $R^f |w| |v|$ .

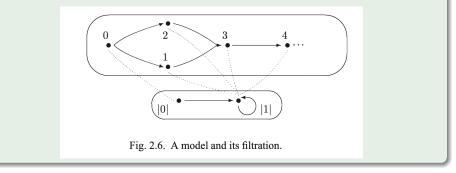
**3** If  $R^f |w| |v|$  then for all  $\diamondsuit \phi \in \Sigma$ , if  $\mathfrak{M}, v \Vdash \phi$  then  $\mathfrak{M}, w \Vdash \diamondsuit \phi$ .

•  $V^f(p) = \{|w| : \mathfrak{M}, w \Vdash p\}$ , for all proposition letters p in  $\Sigma$ .

Then  $\mathfrak{M}^{f}_{\Sigma}$  is called a **filtration** of  $\mathfrak{M}$  through  $\Sigma$ .

#### Examples

Let  $\mathfrak{M} = (\mathbb{N}, R, V)$ , where  $R = \{(0, 1), (0, 2), (1, 3)\} \cup \{(n, n+1) : n \ge 2\}$ , and V has  $V(p) = \mathbb{N} - \{0\}$  and  $V(q) = \{2\}$ . For subformula closed  $\Sigma = \{\diamondsuit p, p\}$ .  $\mathfrak{M}' = (\{|0|, |1|\}, \{(|0|, |1|), (|1|, |1|)\}, V')$ , where  $V'(p) = \{|1|\}$ , is a filtration of  $\mathfrak{M}$  through  $\Sigma$ .



|                 |                                     |           |      | _ | 2.15    |
|-----------------|-------------------------------------|-----------|------|---|---------|
| Fu (UW-Madison) | A Brief Introduction to Modal Logic | Presentat | tion |   | 18 / 38 |

## Filtration Theorem

By construction of the filtration, one has the following:

#### Theorem

Let  $\mathfrak{M}^{f} = (W_{\Sigma}, R^{f}, V^{f})$  be a filtration of  $\mathfrak{M}$  through a subformula closed set  $\Sigma$ . Then for all formulas  $\varphi \in \Sigma$ , and all states  $w \in W$ , we have

 $\mathfrak{M}, w \Vdash \varphi \quad iff \quad \mathfrak{M}^f, |w| \Vdash \varphi.$ 

Finite Model Property is then realized under filtration:

#### Theorem (Finite Model Property)

If a basic modal formula  $\varphi$  is satisfiable, it is satisfiable on a finite model.

In fact,  $\varphi$  is satisfiable on a finite model containing at most  $2^m$  nodes, where *m* is the number of subformulas of  $\varphi$ .

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

One can link the modal logic to first-order logic in the following way:

#### Definition

For  $\tau$  a modal similarity type and  $\Phi$  a collection of proposition letters, let  $L^1_{\tau}(\Phi)$  be the first-order language (with equality) which has unary predicates  $P_0, P_1, P_2, \ldots$  corresponding to the proposition letters  $p_0, p_1, p_2, \ldots$  in  $\Phi$ , and an (n + 1)-ary relation symbol  $R_{\Delta}$  for each (n-ary) modal operator  $\Delta \in O$ .

Then we are ready for the translation.

20 / 38

#### Definition

Let x be a first-order variable. The **standard translation**  $ST_x$  taking modal formulas to first-order formulas in  $L^1_{\tau}(\Phi)$  is defined as follows:

$$I ST_x(p) = Px.$$

$$ST_x(\bot) = x \neq x.$$

- $ST_x(\neg \varphi) = \neg ST_x(\varphi).$
- $\mathsf{ST}_x(\varphi \lor \psi) = \mathsf{ST}_x(\varphi) \lor \mathsf{ST}_x(\psi).$
- $\mathsf{ST}_x(\triangle(\varphi_1,\ldots,\varphi_n)) = \exists y_1\ldots \exists y_n (R_\Delta x y_1\ldots y_n \land \bigwedge_{i=1}^n \mathsf{ST}_{y_i}(\varphi_i))$ where  $y_1,\ldots,y_n$  are new variables.

In case of basic modal logic, (5) becomes the usual quantifier

 $\mathsf{ST}_x(\diamondsuit \varphi) = \exists y (\mathsf{Rx}y \land \mathsf{ST}_y(\varphi)), \quad \mathsf{ST}_x(\Box \varphi) = \forall y (\mathsf{Rx}y \to \mathsf{ST}_y(\varphi)).$ 

#### Examples

 $\mathsf{ST}_x(\diamondsuit(\Box p \to q)) = \exists y_1 \left( \mathsf{Rx} y_1 \land \left( \forall y_2 \left( \mathsf{Ry}_1 y_2 \to \mathsf{Py}_2 \right) \to \mathsf{Qy}_1 \right) \right).$ 

## Van Benthem's Theorem

This theorem precisely characterize the relation between first-order logic, modal logic, and bisimulations.

#### Definition

A first-order formula  $\alpha(x)$  in  $\mathcal{L}^{1}_{\tau}$  is **invariant for bisimulations** if whenever  $\mathfrak{M}, w$  and  $\mathfrak{M}', w'$  are two bisimilar models, then  $\mathfrak{M} \models \varphi[w]$  iff  $\mathfrak{M}' \models \varphi[w']$ .

## Theorem (van Benthem Characterization Theorem)

A first-order formula  $\alpha(x)$  in  $\mathcal{L}^1_{\tau}$  is invariant for bisimulations iff it is equivalent to the standard translation of a modal  $\tau$ -formula.

Modal logic is the bisimulation invariant fragment of first-order logic.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

## Table of Contents







#### 4 Completeness

| Fu ( | (UW-Madison) |  |
|------|--------------|--|
|      |              |  |

<ロト <問ト < 目ト < 目ト

# Frame Definability

Let  $\varphi$  a modal formula of similarity type  $\tau,$  and F a class of  $\tau\text{-frames}.$ 

### Definition

 $\varphi$  defines F if for all frames  $\mathfrak{F}$ ,  $\mathfrak{F}$  is in F iff  $\mathfrak{F} \Vdash \varphi$ . Similarly, if  $\Gamma$  is a set of modal formulas of this type, we say that  $\Gamma$  defines F if  $\mathfrak{F}$  is in F iff  $\mathfrak{F} \Vdash \Gamma$ .

## Theorem (Goldblatt-Thomason)

A first-order definable class F of  $\tau$ -frames is modally definable iff it is closed under taking bounded morphic images, generated subframes, disjoint unions and reflects ultrafilter extensions.

(4) (日本)

#### Definition

Modal formula  $\varphi$  and first-order formula  $\alpha(x)$  are called **local frame** correspondents of each other if for any frame  $\mathfrak{F}$  and any state w of  $\mathfrak{F}$ :

 $\mathfrak{F}, \mathbf{w} \Vdash \varphi \quad \text{iff} \quad \mathfrak{F} \models \alpha[\mathbf{w}]$ 

Modal formulas contains no proposition letters are **closed**, closed formulas have automatic first-order correspondence.

#### Theorem

Let  $\varphi$  be a closed modal formula, it is locally corresponds to a first-order formula  $c_{\varphi}(x)$  which is computable from  $\varphi$ .

イロト 不得 トイヨト イヨト 二日

A modal formula is **uniform** if all its proposition letters occur uniformly. A proposition letter p occurs **uniformly** in a modal formula if it occurs only positively (in scope of even number of negations), or only negatively (in scope of odd number of negations).

#### Examples

 $\diamondsuit(p \to q) = \diamondsuit(\neg p \lor q)$  is uniform for it is negative in p and positive in q.

Uniform formulas also have automatic first-order correspondence.

#### Theorem

Let  $\varphi$  be a uniform modal formula, it is locally corresponds to a first-order formula  $c_{\varphi}(x)$  which is computable from  $\varphi$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Does any modal formula  $\varphi$  has first-order Correspondence?

### Theorem (Chagrova's Theorem)

*It is noncomputable whether an arbitrary basic modal formula has a first-order correspondent.* 

However, there are computable subsets of modal formulas with first-order correspondents. One important example is Sahlqvist Formulas.

<日<br />
<</p>

# Sahlqvist Formulas

## Definition

A **Sahlqvist antecedent** is built from  $\bot, \top$ , negative formulas and **boxed atom**  $\Box^n p$  by applying  $\diamondsuit$  and  $\land$ . A **Sahlqvist implication** is a modal formula of the form  $\varphi \to \psi$ , where  $\varphi$  is a Sahlqvist antecedent and  $\psi$  is a positive formula. A **Sahlqvist formula** is built from Sahlqvist implications by applying  $\Box$  and  $\lor$ .

### Theorem (Sahlqvist Correspondence)

For any Sahlqvist formula  $\varphi$ , there is a corresponding first-order sentence that holds in a frame iff  $\varphi$  is valid in the frame.

One can compute the first-order correspondence of Sahlqvist formulas. For simplicity, we demonstrate the algorithm for simple Sahlqvist Formulas (whose antecedent is built from only  $\bot, \top$  and boxed atoms).

### Definition (Sahlqvist-Van Benthem Algorithm)

- Identify boxed atoms in the antecedent.
- 2 Draw the picture that discusses the minimal valuation that makes the antecedent true. Name the worlds involved by  $t_0, \ldots, t_n$ .
- Work out the minimal valuation i.e., get a first-order expression for it in terms of the named worlds.
- Work out the standard translation of φ. Use the names you fixed for the variables that correspond to ◊'s in the antecedent.

### Definition (Algorithm, cont.)

**Q** Pull out the quantifiers that bind  $t_i$  variables in the antecedent to the front. For this use the equivalences

 $\exists x \alpha(x) \land \beta \leftrightarrow \exists x(\alpha(x) \land \beta) \quad \exists x \alpha(x) \to \beta \leftrightarrow \forall x(\alpha(x) \to \beta)$ 

- 2 Replace all the predicates P(x), Q(x), etc., with the first-order expression corresponding to the minimal valuation.
- Simplify, if possible.
- Add  $\forall x$  (binding the free variable of the standard translation) to the resulting first-order formula to obtain the global first-order correspondent.

If  $\varphi$  is a Sahlqvist formula, say  $\Box(\varphi \to \psi) \lor \Box(\varphi' \to \psi')$  (where  $\varphi \to \psi$ and  $\varphi' \rightarrow \psi'$  are simple Sahlqvist formulas), then draw a diagram where outer  $\Box$ 's are treated as  $\diamond$ 's and  $\lor$  is treated as  $\land$ .

## Examples

#### Examples

Let  $\varphi = \Box p \rightarrow p$ . The diagram



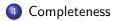
The minimal valuation is  $V(p) = \{z : Rxz\}$ . The standard translation of  $\varphi$  is  $\forall y(Rxy \rightarrow P(y)) \rightarrow P(x)$ . Replace P(y) with Rxy and P(x) with Rxx. We obtain  $\forall y(Rxy \rightarrow Rxy) \rightarrow Rxx$ . This is equivalent to Rxx. By adding  $\forall x$  we obtain the global first-order correspondent  $\forall xRxx$  (reflexivity).

## Table of Contents









イロト イポト イヨト イヨト

æ

## Definition

A **normal modal logic**  $\Lambda$  is a set of formulas that contains all tautologies,  $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$ , and  $\diamondsuit p \leftrightarrow \neg \Box \neg p$ , and closed under rules:

- $I Modus ponens (MP): if \varphi and \varphi \to \psi, then \psi.$
- Oniform substitution (US): if φ, then θ, where θ is obtained from φ by replacing proposition letters in φ by arbitrary formulas.
- **3** Generalization (G): if  $\varphi$ , then  $\Box \varphi$ .

Denote the smallest normal modal logic K.

 ${\bf K}$  turns out to be the 'minimal' system for reasoning about frames.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Instead of  $\mathbf{K} \vdash \varphi$  one often writes  $\vdash_{\mathbf{K}} \varphi$ .

## Examples

Here is derivation for  $\vdash_{\mathbf{K}} \Box(A \land B) \rightarrow \Box A$ :

$$\vdash_{\mathbf{K}} A \land B \to A \quad (\text{Propositional tautology})$$
$$\vdash_{\mathbf{K}} \Box (A \land B \to A) \quad (\mathsf{N})$$
$$\vdash_{\mathbf{K}} \Box (A \land B \to A) \to (\Box (A \land B) \to \Box A) \quad (\mathbf{K}\text{-axiom})$$
$$\vdash_{\mathbf{K}} \Box (A \land B) \to \Box A \quad (\mathsf{MP}).$$

Fu (UW-Madison)

イロト イポト イヨト イヨト

э

## Soundness and Completeness for K

Fix a modal similarity type  $\tau$  and a countable set  $\Phi$  of proposition letters. Semantically, define the logic of a class of frames C to be the collection

$$\Lambda_{\mathsf{C}} = \{ \varphi \in \mathsf{Form}(\tau, \Phi) : \mathsf{C} \Vdash \varphi \}.$$

Syntactically, the theorem of K is just K:

$$\mathsf{Th}(\mathbf{K}) = \{ \varphi \in \mathsf{Form}(\tau, \Phi) : \mathbf{K} \vdash \varphi \} = \mathbf{K}.$$

We want them to coincide.

#### Theorem

A formula is a theorem of K iff it is valid in every frames. i.e.:

 $\bm{K}=\Lambda_{F}$ 

Soundness is by easy induction yet completeness is harder.

| (UW-Madison) |  |
|--------------|--|
|              |  |

A Brief Introduction to Modal Logic

Presentation 35 / 38

Computability and Complexity naturally arises in normal modal logic. One important instance is the satisfiability/validity problems:

### Definition (S-V Question)

Given a modal formula  $\varphi$  and a class of models M, is it computable whether  $\varphi$  is M-satisfiable/valid?

Observe  $\varphi$  is M-valid iff  $\neg \varphi$  is not M-satisfiable, S is computable iff V is.

# Harrop's theorem

#### Theorem

Every axiomatizable normal modal logic that has the finite model property with respect to an c.e. set of models M is computable.

## Theorem (Harrop)

Every finitely axiomatizable normal modal logic with the finite model property is computable.

Check if a finite frame validates the axioms of  $\Lambda$  (finitely many).

#### Corollary

Being finitely axiomatizable and with FMP, K is computable.

< □ > < □ > < □ > < □ > < □ > < □ >

Blackburn, Rijke, Venema. Modal Logic. Cambridge U. Press. 2001.

イロン 不聞 とくほとう ほとう