A Brief Introduction to Modal Logic

Yuxiao Fu
University of Wisconsin-Madison
Logic Student Seminar, Fall 2022

Table of Contents

(1) Basics
(2) Models
(3) Frames
(4) Completeness

Table of Contents

(1) Basics

(4) Completeness

Formulas

Similar to first-order logic, Modal Logic can be seen as an extension to propositional logic found useful in philosophy and linguistics. The language of basic modal logic is given by the following grammar:

$$
\varphi::=p|\perp| \neg \varphi|\psi \vee \varphi| \diamond \varphi
$$

where p ranges over a given set of propositional variables. Next to the standard Boolean abbreviations $\top, \wedge, \rightarrow, \leftrightarrow$ we will also use $\square:=\neg \diamond \neg$.

Readings

Examples

Modal logic can comes with different flavors depending on the reading of modal operators, three common readings are:
(1) Possible: $\diamond \varphi$ reads "It is possible that φ " and $\square \varphi$ reads "It is necessarily that $\varphi^{\prime \prime}$. Some truth include $\square \varphi \rightarrow \diamond \varphi, \varphi \rightarrow \diamond \varphi$.
(2) Episemic: $\square \varphi$ reads "the agent knows that φ " and $\diamond \varphi$ reads "the agent does not know that $\neg \varphi$ ". Note $\varphi \rightarrow \square \varphi$ but not conversely.
(3) Provable: $\square \varphi$ reads "it is provable that φ " and $\diamond \varphi$ reads "it is not provable that $\neg \varphi$ ". Löb formula states $\square(\square \varphi \rightarrow \varphi) \rightarrow \square \varphi$.

Generalized

One may generalize the basic modal logic by adding more modal operators to propositional logic:

Definition

A modal language $\mathrm{ML}(\tau, \Phi)$ is built up using a modal similarity type $\tau=(O, \rho)$ and a set of proposition letters Φ, where nonempty O contains modal operators \triangle_{i}, and $\rho: O \rightarrow \mathbb{N}$ assigns each \triangle_{i} its arity. The set Form (τ, Φ) of modal formulas over τ and Φ is given by

$$
\varphi::=p|\perp| \neg \varphi\left|\varphi_{1} \vee \varphi_{2}\right| \triangle\left(\varphi_{1}, \ldots, \varphi_{\rho(\Delta)}\right)
$$

where p ranges over Φ and \triangle ranges over O.
Denote $\nabla\left(\varphi_{1}, \ldots, \varphi_{n}\right):=\neg \Delta\left(\neg \varphi_{1}, \ldots, \neg \varphi_{n}\right)$ for each $\Delta \in O$.

More Readings

Examples

(1) Temporal: $O=\{\mathrm{F}, \mathrm{P}\}$. $\mathrm{F} \varphi$ reads " φ will happen at some Future time", and $\mathrm{P} \varphi$ reads " φ happened at some Past time". Their dual $\mathrm{G} \varphi$ and $\mathrm{H} \varphi$ reads "it is always Going to be φ " and "it always Has been φ ". Some truth in this logic: $\mathrm{P} \phi \rightarrow \mathrm{GP} \phi$ ("whatever has happened will always have happened") and $\mathrm{F} \varphi \rightarrow \mathrm{FF} \varphi$.
(2) Propositional Dynamic: Each diamond has the form $\langle\pi\rangle$, where π is a non-deterministic program, and $\langle\pi\rangle \varphi$ means "some terminating execution of π from the present state leads to a state bearing the information φ.' The dual $[\pi] \phi$ states that "every execution of π from the present state leads to a state bearing the information $\varphi^{\prime \prime}$.

Kripke Models

Definition

A (Kripke) model $\mathfrak{M}=(W, R, V)$ consists of a non-empty set W, a binary accessibility relation $R \subseteq W^{2}$ and a valuation $V: \Phi \rightarrow \mathcal{P}(W)$.

The underlying relational structure $\mathfrak{F}=(W, R)$ is a (Kripke) frame.

Examples

In the following model, $W=\{s, t, u, v, w\}$,
$R=\{\langle s, s\rangle,\langle s, t\rangle,\langle t, t\rangle,\langle t, w\rangle,\langle s, u\rangle,\langle u, v\rangle,\langle v, w\rangle\}$,
$V(p)=\{s, t, w\}$ and $V(q)=\{t\}$.

Kripke Semantics

Definition

Given a model \mathfrak{M} we define the notion of a modal formula φ being true or satisfied in \mathfrak{M} at a world $w \in \mathfrak{M}$, denoted $\mathfrak{M}, w \Vdash \varphi$, inductively by

```
M,w\Vdashp iff w
M,w\Vdash\perp iff never
M,w\Vdash\neg\varphi iff }\mathfrak{M},w|
M,w\Vdash\varphi\vee\psi iff }\quad\mathfrak{M},w\Vdash\varphi\mathrm{ or }\mathfrak{M},w\Vdash
M,w\Vdash\diamond\varphi iff }\mathfrak{M},v\Vdash\varphi,\mathrm{ for some v}\in\mathbb{W}\mathrm{ with Rwv.
```

A formula φ is globally true in a model \mathfrak{M} if it is true at every $w \in \mathfrak{M}$, denoted $\mathfrak{M} \Vdash \varphi$; and satisfiable in \mathfrak{M} if it is true in at least one $w \in \mathfrak{M}$.

Examples

$$
\mathfrak{M}, t \Vdash p \wedge q, \mathfrak{M}, t \Vdash \diamond p, \mathfrak{M}, w \Vdash \neg q, \text { and } \mathfrak{M}, w \Vdash \square \neg p .
$$

Satisfiability and Validity

Definition (for Models)

A formula φ is satisfiable if it is satisfiable in some model, and valid if it is globally true in every model.

Examples

$\square \top$ is valid, $\square p \wedge \diamond \neg p$ is never satisfiable.

Definition (for Frames)

A formula φ is valid in \mathfrak{F} if φ is globally true in model (\mathfrak{F}, V) for every valuation V (denoted $\mathfrak{F} \Vdash \varphi$), and valid in a class of frames C if $\mathfrak{F} \Vdash \varphi$ for each $\mathfrak{F} \in \mathrm{C}$ (denoted $\mathrm{C} \Vdash \varphi)$. A formula is satisfiable in \mathfrak{F} if it is satisfiable in (\mathfrak{F}, V) for some valuation V.

Examples

$\mathrm{K} \Vdash \diamond(p \vee q) \rightarrow(\diamond p \vee \diamond q)$, but not $\diamond \diamond p \rightarrow \diamond p$.

Table of Contents

(2) Models

Modal Equivalence

Let \mathfrak{M} and \mathfrak{M}^{\prime} be models of the same modal similarity type τ, and let w and w^{\prime} be states in \mathfrak{M} and \mathfrak{M}^{\prime} respectively.

Definition

The τ-theory of w is $\{\varphi: \mathfrak{M}, w \Vdash \varphi\} . w$ and w^{\prime} are (modally) equivalent ($w<m \not w^{\prime}$) if they have the same τ-theories. $\mathfrak{M} \leadsto \mathfrak{M}^{\prime}$ is defined similarly.

Bisimulations

Let $\mathfrak{M}=(W, R, V)$ and $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ be two models.

Definition

A non-empty binary relation $Z \subseteq W \times W^{\prime}$ is called a bisimulation between \mathfrak{M} and $\mathfrak{M}^{\prime}\left(Z: \mathfrak{M} \leftrightarrow \mathfrak{M}^{\prime}\right)$ if:
(1) If $w Z w^{\prime}$ then w and w^{\prime} satisfy the same proposition letters.
(2) If $w Z w^{\prime}$ and $R w v$, there exists $v^{\prime} \in W^{\prime}$ such that $v Z v^{\prime}$ and $R^{\prime} w^{\prime} v^{\prime}$.
(3) If $w Z w^{\prime}$ and $R^{\prime} w^{\prime} v^{\prime}$, there exists $v \in W$ such that $v Z v^{\prime}$ and $R w v$. If $w Z w^{\prime}$ by bisimulation Z, we say w and w^{\prime} is bisimilar ($w \leftrightarrow w^{\prime}$).

A bisimulation is a relation between two models in which related states have identical atomic information and matching transition possibilities.

Examples

The following two models are bisimilar by

$$
Z=\{(1, a),(2, b),(2, c),(3, d),(4, e),(5, e)\}
$$

Fig. 2.4. Bisimilar models.

Invariance under Bisimulation

Let τ be a modal similarity type, and let $\mathfrak{M}, \mathfrak{M}^{\prime}$ be τ-models.

Theorem

For every $w \in W$ and $w^{\prime} \in W^{\prime}, w \leftrightarrow w^{\prime}$ implies that $w \rightsquigarrow w^{\prime}$.
That is, modal formulas are invariant under bisimulation: modal formulas cannot distinguish between bisimilar states or between bisimilar models. This is different from first-order logic.

Examples

Observe that $\mathfrak{M}^{\prime}, a \Vdash \varphi(a)$ but $\mathfrak{M}, 1 \nvdash \varphi(1)$ for $\varphi(x)$:

$$
\exists y_{1} y_{2} y_{3}\left(y_{1} \neq y_{2} \wedge y_{1} \neq y_{3} \wedge y_{2} \neq y_{3} \wedge R x y_{1} \wedge R x y_{2} \wedge R y_{1} y_{3} \wedge R y_{2} y_{3}\right)
$$

So φ distinguishes $a \leftrightarrow 1$.

Hennessy-Milner

The converse does not hold in general, but does for image-finite models.

Definition

A τ-model \mathfrak{M} is image-finite if for each state u and relation R, the set $\left\{\left(v_{1}, \ldots, v_{n}\right): R u v_{1} \ldots v_{n}\right\}$ is finite.

Theorem (Hennessy-Milner)

Let \mathfrak{M} and \mathfrak{M}^{\prime} be two image-finite τ-models. Then, for every $w \in W$ and $w^{\prime} \in W^{\prime}, w \leftrightarrow w^{\prime}$ iff $w \leftrightarrow w^{\prime}$

Finite Models

Similar to compactness of first-order logic, modal logic has finite model property (FMP). For this, one needs the notion of filtration.

Definition

Let $\mathfrak{M}=(W, R, V)$ be a model and Σ a subformula closed set of formulas. Let $\stackrel{M}{ } \Sigma$ be the equivalence relation on the states of \mathfrak{M} defined by:

$$
w \stackrel{\text { un } \Sigma}{ } v \text { iff } \forall \varphi \in \Sigma: \mathfrak{M}, w \Vdash \varphi \text { iff } \mathfrak{M}, v \Vdash \varphi .
$$

Denote $|w|_{\Sigma}$ the equivalence class of $w \in W$. Let $W_{\Sigma}=\left\{|w|_{\Sigma}: w \in W\right\}$. Suppose $\mathfrak{M}_{\Sigma}^{f}$ is any model $\left(W^{f}, R^{f}, V^{f}\right)$ such that:
(1) $W^{f}=W_{\Sigma}$.
(2) If $R w v$ then $R^{f}|w||v|$.
(3) If $R^{f}|w \| v|$ then for all $\diamond \phi \in \Sigma$, if $\mathfrak{M}, v \Vdash \phi$ then $\mathfrak{M}, w \Vdash \diamond \phi$.
(1) $V^{f}(p)=\{|w|: \mathfrak{M}, w \Vdash p\}$, for all proposition letters p in Σ.

Then $\mathfrak{M}_{\Sigma}^{f}$ is called a filtration of \mathfrak{M} through Σ.

Examples

Let $\mathfrak{M}=(\mathbb{N}, R, V)$, where $R=\{(0,1),(0,2),(1,3)\} \cup\{(n, n+1): n \geq 2\}$, and V has $V(p)=\mathbb{N}-\{0\}$ and $V(q)=\{2\}$. For subformula closed $\Sigma=\{\diamond p, p\} . \mathfrak{M}^{\prime}=\left(\{|0|,|1|\},\{(|0|,|1|),(|1|,|1|)\}, V^{\prime}\right)$, where $V^{\prime}(p)=\{|1|\}$, is a filtration of \mathfrak{M} through Σ.

Fig. 2.6. A model and its filtration.

Filtration Theorem

By construction of the filtration, one has the following:

Theorem

Let $\mathfrak{M}^{f}=\left(W_{\Sigma}, R^{f}, V^{f}\right)$ be a filtration of \mathfrak{M} through a subformula closed set Σ. Then for all formulas $\varphi \in \Sigma$, and all states $w \in W$, we have

$$
\mathfrak{M}, w \Vdash \varphi \quad \text { iff } \quad \mathfrak{M}^{f},|w| \Vdash \varphi
$$

Finite Model Property is then realized under filtration:

Theorem (Finite Model Property)

If a basic modal formula φ is satisfiable, it is satisfiable on a finite model.
In fact, φ is satisfiable on a finite model containing at most 2^{m} nodes, where m is the number of subformulas of φ.

Standard Translation

One can link the modal logic to first-order logic in the following way:

Definition

For τ a modal similarity type and Φ a collection of proposition letters, let $L_{\tau}^{1}(\Phi)$ be the first-order language (with equality) which has unary predicates $P_{0}, P_{1}, P_{2}, \ldots$ corresponding to the proposition letters $p_{0}, p_{1}, p_{2}, \ldots$ in Φ, and an $(n+1)$-ary relation symbol R_{Δ} for each (n-ary) modal operator $\Delta \in O$.

Then we are ready for the translation.

Definition

Let x be a first-order variable. The standard translation ST_{x} taking modal formulas to first-order formulas in $L_{\tau}^{1}(\Phi)$ is defined as follows:
(1) $\mathrm{ST}_{x}(p)=P x$.
(2) $\mathrm{ST}_{x}(\perp)=x \neq x$.
(0 $\mathrm{ST}_{x}(\neg \varphi)=\neg \mathrm{ST}_{x}(\varphi)$.

- $\mathrm{ST}_{x}(\varphi \vee \psi)=\mathrm{ST}_{x}(\varphi) \vee \mathrm{ST}_{x}(\psi)$.
- $\mathrm{ST}_{x}\left(\triangle\left(\varphi_{1}, \ldots, \varphi_{n}\right)\right)=\exists y_{1} \ldots \exists y_{n}\left(R_{\Delta} x y_{1} \ldots y_{n} \wedge \bigwedge_{i=1}^{n} \mathrm{ST}_{y_{i}}\left(\varphi_{i}\right)\right)$ where y_{1}, \ldots, y_{n} are new variables.

In case of basic modal logic, (5) becomes the usual quantifier

$$
\mathrm{ST}_{x}(\diamond \varphi)=\exists y\left(R x y \wedge \mathrm{ST}_{y}(\varphi)\right), \quad \mathrm{ST}_{x}(\square \varphi)=\forall y\left(R x y \rightarrow \mathrm{ST}_{y}(\varphi)\right) .
$$

Examples

$$
\mathrm{ST}_{x}(\diamond(\square p \rightarrow q))=\exists y_{1}\left(R x y_{1} \wedge\left(\forall y_{2}\left(R y_{1} y_{2} \rightarrow P y_{2}\right) \rightarrow Q y_{1}\right)\right) .
$$

Van Benthem's Theorem

This theorem precisely characterize the relation between first-order logic, modal logic, and bisimulations.

Definition

A first-order formula $\alpha(x)$ in \mathcal{L}_{τ}^{1} is invariant for bisimulations if whenever \mathfrak{M}, w and $\mathfrak{M}^{\prime}, w^{\prime}$ are two bisimilar models, then $\mathfrak{M} \vDash \varphi[w]$ iff $\mathfrak{M}^{\prime} \vDash \varphi\left[w^{\prime}\right]$.

Theorem (van Benthem Characterization Theorem)

A first-order formula $\alpha(x)$ in \mathcal{L}_{τ}^{1} is invariant for bisimulations iff it is equivalent to the standard translation of a modal τ-formula.

Modal logic is the bisimulation invariant fragment of first-order logic.

Table of Contents

(2) Models
(3) Frames
(4) Completeness

Frame Definability

Let φ a modal formula of similarity type τ, and F a class of τ-frames.

Definition

φ defines F if for all frames \mathfrak{F}, \mathfrak{F} is in F iff $\mathfrak{F} \Vdash \varphi$. Similarly, if Γ is a set of modal formulas of this type, we say that Γ defines F if \mathfrak{F} is in F iff $\mathfrak{F} \Vdash \Gamma$.

Theorem (Goldblatt-Thomason)

A first-order definable class F of τ-frames is modally definable iff it is closed under taking bounded morphic images, generated subframes, disjoint unions and reflects ultrafilter extensions.

Automatic First-order Correspondence

Definition

Modal formula φ and first-order formula $\alpha(x)$ are called local frame correspondents of each other if for any frame \mathfrak{F} and any state w of \mathfrak{F} :

$$
\mathfrak{F}, w \Vdash \varphi \quad \text { iff } \quad \mathfrak{F} \models \alpha[w]
$$

Modal formulas contains no proposition letters are closed, closed formulas have automatic first-order correspondence.

Theorem

Let φ be a closed modal formula, it is locally corresponds to a first-order formula $c_{\varphi}(x)$ which is computable from φ.

A modal formula is uniform if all its proposition letters occur uniformly. A proposition letter p occurs uniformly in a modal formula if it occurs only positively (in scope of even number of negations), or only negatively (in scope of odd number of negations).

Examples

$\diamond(p \rightarrow q)=\diamond(\neg p \vee q)$ is uniform for it is negative in p and positive in q.
Uniform formulas also have automatic first-order correspondence.

Theorem

Let φ be a uniform modal formula, it is locally corresponds to a first-order formula $c_{\varphi}(x)$ which is computable from φ.

Chagrova's Theorem

Does any modal formula φ has first-order Correspondence?
Theorem (Chagrova's Theorem)
It is noncomputable whether an arbitrary basic modal formula has a first-order correspondent.

However, there are computable subsets of modal formulas with first-order correspondents. One important example is Sahlqvist Formulas.

Sahlqvist Formulas

Definition

A Sahlqvist antecedent is built from \perp, \top, negative formulas and boxed atom $\square^{n} p$ by applying \diamond and \wedge. A Sahlqvist implication is a modal formula of the form $\varphi \rightarrow \psi$, where φ is a Sahlqvist antecedent and ψ is a positive formula. A Sahlqvist formula is built from Sahlqvist implications by applying \square and \vee.

Theorem (Sahlqvist Correspondence)

For any Sahlqvist formula φ, there is a corresponding first-order sentence that holds in a frame iff φ is valid in the frame.

Sahlqvist-Van Benthem Algorithm

One can compute the first-order correspondence of Sahlqvist formulas. For simplicity, we demonstrate the algorithm for simple Sahlqvist Formulas (whose antecedent is built from only \perp, \top and boxed atoms).

Definition (Sahlqvist-Van Benthem Algorithm)

(1) Identify boxed atoms in the antecedent.
(2) Draw the picture that discusses the minimal valuation that makes the antecedent true. Name the worlds involved by t_{0}, \ldots, t_{n}.
(3) Work out the minimal valuation i.e., get a first-order expression for it in terms of the named worlds.
(9) Work out the standard translation of φ. Use the names you fixed for the variables that correspond to \diamond 's in the antecedent.

Definition (Algorithm, cont.)

(1) Pull out the quantifiers that bind t_{i} variables in the antecedent to the front. For this use the equivalences

$$
\exists x \alpha(x) \wedge \beta \leftrightarrow \exists x(\alpha(x) \wedge \beta) \quad \exists x \alpha(x) \rightarrow \beta \leftrightarrow \forall x(\alpha(x) \rightarrow \beta)
$$

(2) Replace all the predicates $P(x), Q(x)$, etc., with the first-order expression corresponding to the minimal valuation.
(3) Simplify, if possible.
(9) Add $\forall x$ (binding the free variable of the standard translation) to the resulting first-order formula to obtain the global first-order correspondent.

If φ is a Sahlqvist formula, say $\square(\varphi \rightarrow \psi) \vee \square\left(\varphi^{\prime} \rightarrow \psi^{\prime}\right)$ (where $\varphi \rightarrow \psi$ and $\varphi^{\prime} \rightarrow \psi^{\prime}$ are simple Sahlqvist formulas), then draw a diagram where outer \square 's are treated as \diamond 's and \vee is treated as \wedge.

Examples

Examples

Let $\varphi=\square p \rightarrow p$. The diagram

The minimal valuation is $V(p)=\{z: R x z\}$. The standard translation of φ is $\forall y(R x y \rightarrow P(y)) \rightarrow P(x)$. Replace $P(y)$ with $R x y$ and $P(x)$ with $R x x$. We obtain $\forall y(R x y \rightarrow R x y) \rightarrow R x x$. This is equivalent to $R x x$. By adding $\forall x$ we obtain the global first-order correspondent $\forall x R x x$ (reflexivity).

Table of Contents

(2) Models
(3) Frames
(4) Completeness

Normal Modal Logic

Definition

A normal modal logic Λ is a set of formulas that contains all tautologies, $\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q)$, and $\diamond p \leftrightarrow \neg \square \neg p$, and closed under rules:
(1) Modus ponens (MP): if φ and $\varphi \rightarrow \psi$, then ψ.
(2) Uniform substitution (US): if φ, then θ, where θ is obtained from φ by replacing proposition letters in φ by arbitrary formulas.
(3) Generalization (G): if φ, then $\square \varphi$.

Denote the smallest normal modal logic K.
K turns out to be the 'minimal' system for reasoning about frames.

Instead of $\mathbf{K} \vdash \varphi$ one often writes $\vdash_{\mathbf{K}} \varphi$.

Examples

Here is derivation for $\vdash_{\mathbf{k}} \square(A \wedge B) \rightarrow \square A$:

$$
\begin{aligned}
& \vdash_{\mathbf{K}} A \wedge B \rightarrow A \quad(\text { Propositional tautology }) \\
& \vdash_{\mathbf{K}} \square(A \wedge B \rightarrow A) \quad(\mathrm{N}) \\
& \vdash_{\mathbf{K}} \square(A \wedge B \rightarrow A) \rightarrow(\square(A \wedge B) \rightarrow \square A) \quad(\mathbf{K} \text {-axiom }) \\
& \vdash_{\mathbf{K}} \square(A \wedge B) \rightarrow \square A \quad(\mathrm{MP}) .
\end{aligned}
$$

Soundness and Completeness for \mathbf{K}

Fix a modal similarity type τ and a countable set Φ of proposition letters. Semantically, define the logic of a class of frames C to be the collection

$$
\Lambda_{C}=\{\varphi \in \operatorname{Form}(\tau, \Phi): C \Vdash \varphi\}
$$

Syntactically, the theorem of \mathbf{K} is just \mathbf{K} :

$$
\operatorname{Th}(\mathbf{K})=\{\varphi \in \operatorname{Form}(\tau, \Phi): \mathbf{K} \vdash \varphi\}=\mathbf{K} .
$$

We want them to coincide.
Theorem
A formula is a theorem of \mathbf{K} iff it is valid in every frames. i.e.:

$$
\mathbf{K}=\Lambda_{F}
$$

Soundness is by easy induction yet completeness is harder.

Computability

Computability and Complexity naturally arises in normal modal logic. One important instance is the satisfiability/validity problems:

Definition (S-V Question)

Given a modal formula φ and a class of models M , is it computable whether φ is M -satisfiable/valid?

Observe φ is M -valid iff $\neg \varphi$ is not M -satisfiable, S is computable iff V is.

Harrop's theorem

Theorem

Every axiomatizable normal modal logic that has the finite model property with respect to an c.e. set of models M is computable.

Theorem (Harrop)

Every finitely axiomatizable normal modal logic with the finite model property is computable.

Check if a finite frame validates the axioms of Λ (finitely many).

Corollary

Being finitely axiomatizable and with FMP, \mathbf{K} is computable.

Reference

Blackburn, Rijke, Venema. Modal Logic. Cambridge U. Press. 2001.

