ALGEBRA QUALIFYING EXAM, JANUARY 2015

- (1) This problem concerns expressing groups as unions of proper subgroups.
 - (a) Show that no group is the union of two proper subgroups.
 - (b) Show that \mathbb{Z} is not the union of any number of proper subgroups.
 - (c) For which n is \mathbb{Z}^n the union of finitely many proper subgroups? What is the minimal number of such subgroups as a function of n?
- (2) Let L/K be a finite extension of fields whose degree p = [L : K] is a prime number. Let σ be an automorphism of L over K (that is, an element of the Galois group $\operatorname{Gal}(L/K)$), $\sigma \neq id$. In particular, σ is a linear operator on the *p*-dimensional K-vector space L. Suppose σ is diagonalizable over K (that is, there is a basis of L as K-vector space consisting of eigenvectors for σ). Show that L is the splitting field of the polynomial $x^p - a$ for some $a \in K$.
- (3) Let V be a subspace of \mathbb{C}^n spanned by the basis vectors e_1, \ldots, e_m , and let E be the set of matrices A in $M_n(\mathbb{C})$ such that $AV \subset V$.
 - (a) Show that E is an algebra.
 - (b) Compute all the two-sided ideals of E.
- (4) Let F be a field, and let V be a finite-dimensional vector space over F that has dimension $n \ (1 \le n < \infty)$. Let q be a nonzero element of F such that $q^i \ne 1$ for $1 \le i \le n$. Suppose given F-linear transformations $X : V \to V$ and $Y : V \to V$ such that XY = qYX. Show that XY is nilpotent.
- (5) Let R = k[x], for k an algebraically closed field, and let M be a finitely generated R-module. Define the rank of M to be the dimension of the k(x)-vector space M₍₀₎. (Here (0) is the prime ideal in R, and the subscript denotes localization.)
 (a) Prove that the rank of M is finite.
 - (b) If the rank of M is zero, prove that there exists a polynomial $f \in R$ such that $M_f = 0$. (Recall that M_f denotes the appropriate localization.)
 - (c) Consider the function $f: k \to \mathbb{Z}$ given by

$$f(a) = \dim_k M \otimes_R R/(x-a).$$

Prove that for all but finitely many $a \in k$ we have $f(a) = \operatorname{rank} M$.