ALGEBRA QUALIFYING EXAM, JANUARY 2017

1. For this problem (and this problem only) your answer will be graded on correctness alone, and no justification is necessary. Give an example of:
(a) A group G with a normal subgroup N such that G is not a semidirect product $N \rtimes G / N$.
(b) A finite group G that is nilpotent but not abelian.
(c) A group G whose commutator subgroup $[G, G]$ is equal to G.
(d) A non-cyclic group G such that all Sylow subgroups of G are cyclic.
(e) A transitive action of S_{3} on a set X of cardinality greater than 3 .
2. Let $n>0$ be an integer. Let F be a field of characteristic 0 , let V be a vector space over F of dimension n, and let $T: V \rightarrow V$ be an invertible F-linear map such that $T^{-1}=T$.

Denote by W the vector space of linear transformations from V to V that commute with T. Find a formula for $\operatorname{dim}(W)$ in terms of n and the trace of T.
3. Let R be a commutative ring with unity. Show that a polynomial

$$
f(t)=c_{n} t^{n}+c_{n-1} t^{n-1}+\cdots+c_{0} \in R[t]
$$

is nilpotent if and only if all of its coefficients $c_{0}, \ldots, c_{n} \in R$ are nilpotent.
4. This is a question about "biquadratic extensions," in two parts.
(a) Let F / E be a degree- 4 Galois extension, where E and F are fields of characteristic different from 2. Show that $\operatorname{Gal}(F / E) \cong(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$ if and only if there exist $x, y \in E$ such that $F=E(\sqrt{x}, \sqrt{y})$ and none of $x, y, x y$ are squares in E.
(b) Give an example of a field E of characteristic 2 that is not algebraically closed but that has no Galois extension F / E with Galois group $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.
5. Consider the ring $R=\mathbb{C}[x]$.
(a) Describe all simple R-modules.
(b) Give an example of an R-module that is indecomposable, but not simple. (Recall that a module is indecomposable if it cannot be written as a direct sum of non-trivial submodules.)
(c) Consider R-modules $M=R /\left(x^{3}+x^{2}\right)$ and $N=R /\left(x^{3}\right)$, and take their tensor product over $R: M \otimes_{R} N$. It is an R-module, and in particular, a vector space over \mathbb{C}. What is its dimension over \mathbb{C} ?
(d) Let M be any R-module such that $\operatorname{dim}_{\mathbb{C}} M<\infty$, and let $N=R /\left(x^{3}\right)$, as before. Show that

$$
\operatorname{dim}_{\mathbb{C}}\left(M \otimes_{R} N\right)=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{R}(N, M)
$$

