ALGEBRA QUALIFYING EXAM, JANUARY 2017

1. For this problem (and this problem only) your answer will be graded on correctness alone, and no justification is necessary. Give an example of:
(a) A group G with a normal subgroup N such that G is not a semidirect product $N \rtimes G / N$.
(b) A finite group G that is nilpotent but not abelian.
(c) A group G whose commutator subgroup $[G, G]$ is equal to G.
(d) A non-cyclic group G such that all Sylow subgroups of G are cyclic.
(e) A transitive action of S_{3} on a set X of cardinality greater than 3 .
2. Let $n>0$ be an integer. Let F be a field of characteristic 0 , let V be a vector space over F of dimension n, and let $T: V \rightarrow V$ be an invertible F-linear map such that $T^{-1}=T$.

Denote by W the vector space of linear transformations from V to V that commute with T. Find a formula for $\operatorname{dim}(W)$ in terms of n and the trace of T.
3. Let R be a commutative ring with unity. Show that a polynomial

$$
f(t)=c_{n} t^{n}+c_{n-1} t^{n-1}+\cdots+c_{0} \in R[t]
$$

is nilpotent if and only if all of its coefficients $c_{0}, \ldots, c_{n} \in R$ are nilpotent.
4. This is a question about "biquadratic extensions," in two parts.
(a) Let F / E be a degree- 4 Galois extension, where E and F are fields of characteristic different from 2. Show that $\operatorname{Gal}(F / E) \cong(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$ if and only if there exist $x, y \in E$ such that $F=E(\sqrt{x}, \sqrt{y})$ and none of $x, y, x y$ are squares in E.
(b) Give an example of a field E of characteristic 2 that is not algebraically closed but that has no Galois extension F / E with Galois group $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.
5. Consider the ring $R=\mathbb{C}[x]$.
(a) Describe all simple R-modules.
(b) Give an example of an R-module that is indecomposable, but not simple. (Recall that a module is indecomposable if it cannot be written as a direct sum of non-trivial submodules.)
(c) Consider R-modules $M=R /\left(x^{3}+x^{2}\right)$ and $N=R /\left(x^{3}\right)$, and take their tensor product over $R: M \otimes_{R} N$. It is an R-module, and in particular, a vector space over \mathbb{C}. What is its dimension over \mathbb{C} ?
(d) Let M be any R-module such that $\operatorname{dim}_{\mathbb{C}} M<\infty$, and let $N=R /\left(x^{3}\right)$, as before. Show that

$$
\operatorname{dim}_{\mathbb{C}}\left(M \otimes_{R} N\right)=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{R}(N, M)
$$

Solutions

1. (a) $G=\mathbb{Z} / 4 \mathbb{Z}, N=2 \mathbb{Z} / 4 \mathbb{Z}$, or $G=\mathbb{Z}$ and $N=2 \mathbb{Z}$.
(b) The quarternion group $G=\{1, i, j, k,-1,-i,-j,-k\}$.
(c) The alternating group $G=A_{5}$.
(d) The symmetric group $G=S_{3}$.
(e) The left action of S_{3} on itself.
2. Since $T^{2}=I$, the minimal polynomial of T divides $x^{2}-1=(x-1)(x+$ 1). Therefore, the minimal polynomial of T has no repeated roots. Hence T is diagonalizable, with all eigenvalues among $1,-1$. Let $V_{ \pm}:=\operatorname{ker}(T \mp I)$ be the eigenspaces of T for the eigenvalues ± 1. Then $V=V_{+} \oplus V_{-}$. We see that

$$
\begin{aligned}
n & =\operatorname{dim}(V)=\operatorname{dim}\left(V_{+}\right)+\operatorname{dim}\left(V_{-}\right) \\
t & =\operatorname{tr}(T)=\operatorname{dim}\left(V_{+}\right)-\operatorname{dim}\left(V_{-}\right),
\end{aligned}
$$

and therefore

$$
\operatorname{dim}\left(V_{ \pm}\right)=\frac{n \pm t}{2}
$$

Finally, an F-linear map $S: V \rightarrow V$ commutes with T if and only if $S\left(V_{+}\right) \subset V_{+}$ and $S\left(V_{-}\right) \subset V_{-}$; therefore, the dimension of the space of such maps is

$$
\operatorname{dim} \operatorname{Hom}\left(V_{+}, V_{+}\right)+\operatorname{dim} \operatorname{Hom}\left(V_{-}, V_{-}\right)=\operatorname{dim}\left(V_{+}\right)^{2}+\operatorname{dim}\left(V_{-}\right)^{2}=\frac{n^{2}+t^{2}}{2}
$$

3. Recall that the sum of nilpotent elements is nilpotent (which easily follows from the binomial formula); this implies the 'if' direction. For the 'only if', there are (at least) two approaches:

Direct: Suppose f is nilpotent. Looking at the constant term of f^{N}, we see that c_{0} must be nilpotent. This implies that $\left(f-c_{0}\right)$ is nilpotent. Now looking at the lowest coefficient of $\left(f-c_{0}\right)^{N}$, we conclude that c_{1} is nilpotent, and so on.

Less direct: Suppose f is nilpotent. Since the nilradical is the intersection of all the prime ideals, we need to show that $c_{i} \in \mathfrak{p}$ for any prime ideal $\mathfrak{p} \subset R$. This is equivalent to showing that $(f \bmod \mathfrak{p})=0 \in(R / \mathfrak{p})[t]$. However, $(f \bmod \mathfrak{p})$ is a nilpotent polynomial over a domain, which clearly implies it must be zero.
4. (a) Note first that the quadratic formula implies that any quadratic extension of E is of the form $E(\sqrt{x})$ for $x \notin E^{2}$; in particular, any quadratic extension is Galois. Moreover, for $x, y \notin E^{2}$, we see that $E(\sqrt{x})=E(\sqrt{y})$ if and only if $x y \in E^{2}$ (which can be seen from looking at the action of the Galois group, or from squaring the expression $\sqrt{y}=a+b \sqrt{x})$.

Now (a) follows from the observation that $\operatorname{Gal}(F / E) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$ if and only if F is the composite of two distinct quadratic extensions of E. (Of course, there are other proofs.)
(b) The easiest example is probably the Galois field $\mathbb{Z} / 2 \mathbb{Z}$: the Galois group of any of its finite extension is cyclic.
5. (a) The simple modules are of the form R / \mathfrak{m} for maximal ideals \mathfrak{m}; since R is the polynomial ring, we see that the maximal modules are of the form $R /(x-a)$ for $a \in \mathbb{C}$.
(b) $R /\left(x^{2}\right)$ has dimension 2 over \mathbb{C}, therefore it cannot be simple. However, it is indecomposable: otherwise it would be a direct sum of two simple modules, which
contradicts the fact that it has non-trivial nilpotents. (For fancier examples, we could take R-modules $\mathbb{C}[x]$ or $\mathbb{C}(x)$.)
(c) Tensoring the exact sequence

$$
\begin{equation*}
R \xrightarrow{x^{3}} R \rightarrow N \rightarrow 0 \tag{1}
\end{equation*}
$$

by M, we obtain the sequence

$$
M \xrightarrow{x^{3}} M \rightarrow M \otimes_{R} N \rightarrow 0,
$$

so that $M \otimes_{R} N=\operatorname{coker}\left(x^{3}: M \rightarrow M\right)$. In particular, for $M=R /\left(x^{3}+x^{2}\right)$, we get

$$
M \otimes_{R} N=R /\left(x^{3}+x^{2}, x^{3}\right)=R /\left(x^{2}\right),
$$

so that $\operatorname{dim}_{\mathbb{C}} M \otimes_{R} N=2$.
(d) From the previous part,

$$
\operatorname{dim}_{\mathbb{C}} M \otimes_{R} N=\operatorname{dim} \operatorname{coker}\left(x^{3}: M \rightarrow M\right)=\operatorname{dim}(M)-\operatorname{rk}\left(x^{3}: M \rightarrow M\right) .
$$

Applying $\operatorname{Hom}_{R}(-, M)$ to (??), we obtain the sequence

$$
0 \rightarrow \operatorname{Hom}_{R}(N, M) \rightarrow M \xrightarrow{x^{3}} M,
$$

so that $\operatorname{Hom}_{R}(N, M)=\operatorname{ker}\left(x^{3}: M \rightarrow M\right)$, and
$\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{R}(N, M)=\operatorname{dim} \operatorname{ker}\left(x^{3}: M \rightarrow M\right)=\operatorname{dim}(M)-\operatorname{rk}\left(x^{3}: M \rightarrow M\right)$
as well.
(The solution is stated in terms of right/left exactness of the functors, but it can be easily reformulated in more explicit terms.)

