ALGEBRA QUALIFYING EXAM, JANUARY 2018

- 1. For this problem and this problem only your answer will be graded on correctness alone, and no justification is necessary.
 - (a) Give an example of a commutative ring R and a non-zero element $f \in R$ where the localization $R_f = 0$.
 - (b) Give an example of a commutative ring R and an element $f \in R$ where the localization map $R \to R_f$ is neither injective nor surjective.
 - (c) Give an example of a local ring R and an element $f \in R$ where $R_f \neq 0$, but R_f is no longer a local ring.
- **2.** Recall that a (left) zero divisor in a ring R is an element a such that ab = 0 for some nonzero $b \in R$. Consider the rings

 $R_1 = \mathbb{C}[x]/(x^3)$ and $R_2 = M_n(\mathbb{C})$ $(n \times n \text{ matrices over } \mathbb{C}, \text{ where } n > 1).$

- (a) Give an example of a nonzero zero-divisor in the ring R_1 .
- (b) Give an example of a nonzero left zero-divisor in the ring R_2 .
- (c) Prove that the set of zero-divisors of R_1 is an ideal, but the set of left zero-divisors of R_2 is not a left ideal.
- (d) Let R be a commutative ring. Prove that if the set of zero-divisors in R is an ideal I, then $I \subset R$ is a prime ideal.
- **3.** Consider the field F with 11 elements. Let G denote the cyclic group of order 11, with generator $r \in G$. Denote by FG the group algebra of G (also sometimes denoted by F[G]). We consider r as an element of FG, and let $T: FG \to FG$ be the F-linear map such that T(x) = rx for all $x \in FG$. Find the Jordan canonical form of T.
- **4.** Let G be a finite group. Denote by $\operatorname{Aut}(G)$ the group of automorphisms of G and by $Z(G) \subset G$ the center of G.
 - (a) Show that the quotient G/Z(G) is isomorphic to a subgroup of Aut(G).
 - (b) Show that if G/Z(G) is cyclic, then G is abelian.
 - (c) Suppose that Aut(G) is a cyclic group. Show that G is abelian.
 - (d) Show that if G is abelian, then the map $\phi: x \mapsto x^{-1}$ is an automorphism of G.
 - (e) Deduce that there exists no group G such that Aut(G) is a nontrivial cyclic group of odd order (and, in particular, that Aut(G) is finite).
- **5.** Let K be the splitting field of the polynomial $x^4 x^2 1$ over \mathbb{Q} . Compute the Galois group of the extension K/\mathbb{Q} . (For partial credit, find the degree $[K:\mathbb{Q}]$.)