▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

# Lowness for isomophism

Karthik Ravishankar

University of Wisconsin-Madison kravishanka3@wisc.edu

Graduate Student Logic seminar September 19, 2022

## Contents

#### Introduction

Notions of Lowness Equivalent characterizations Comparisons and Examples

#### 2 Measure of this class

Main Results Lemmas/Facts Some Measure Theory Graphs are universal objects  $\mu(\mathcal{C}) = 0$ 

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

# Computationally weak sets

- Lowness captures the notion that a particular set is computationally weak.
- Some other examples of notions of being computationally weak are minimal and hyperimmune free degrees.
- We say a set A is low for P if P<sup>A</sup> = P that is having A as an oracle doesn't give us anything new.

# Notions of Lowness

- A is low (classically) if A' = 0', which can be stated as
  \$\mathcal{P}\$ = set of computably approximable objects is the same as the set of objects A can approximate (\$\mathcal{P}^A\$)
- If  $\mathcal{P}$  is the class of *ML* randoms, then *A* is low for  $\mathcal{P}$  if *A* cannot 'derandomize' any *ML* random set.

#### Low for isomorphism

A degree *d* is low for isomorphism if for every pair of computable structures  $\mathcal{A}$  and  $\mathcal{B}$  we have  $\mathcal{A} \cong_d \mathcal{B} \iff \mathcal{A} \cong_{\Delta_1^0} \mathcal{B}$ 

# Equivalent characterizations

# We say that a set A is low for paths in Baire (Cantor) space if every $\Pi_1^0$ class $\mathcal{P} \subset \omega^{\omega}$ (2<sup> $\omega$ </sup>) which has an A computable element has a computable element.

#### For $A \in 2^{\omega}$ , the following are equivalent

- *A* is low for isomophism.
- *A* is low for paths in Baire space.
- *A* is low for paths in Cantor space.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

# **Comparisons and Examples**

- Various forcing notions can be used to produce low for isomorphism degrees
- Some degrees which are not low for isomorphism:
  - degrees which compute a non computable  $\Delta_2^0$  set
  - Degrees that compute a separator for computably inseparable c.e. sets.
  - There are hyperimmune free degrees which are not low for isomorphism.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

# Main Results:

#### Measure of the class of low for isomophism sets

Let C be the class of low for isomorphism set. Then  $\mu(C) = 0$  where  $\mu$  is the Lebesgue measure on the unit interval.

#### Corollary

No *ML* random degree can be low for isomorphism.

ション ふゆ マ キャ キョン ション ひゃく

# Kucera's Theorem

#### Kucera's Theorem

Let  $\mathcal{X}$  be a  $\Pi_1^0$  class with  $\mu(\mathcal{X}) > 0$ .  $\forall A, A$  is Martin Lof random  $\implies \exists \sigma \in 2^{<\omega}, X \in \mathcal{X}$  such that  $A = \sigma \frown X$ .

Therefore a ML- random computes a member in every  $\Pi_1^0$  class of positive measure. To prove  $\mu(\mathcal{C}) = 0$  below, we construct a  $\Pi_1^0$  class of positive measure, none of whose elements is low for isomorphism. Therefore no ML- random can be low for isomorphism.

# Kolmogrov's 0 – 1 law

#### Definition

Given a sequence of events  $\{A_n\}_n$ , the tail  $\sigma$  algebra  $\mathcal{T}(\{A_n\}_n)$  is defined as  $\cap_n \sigma(\{A_m : m > n\})$ 

#### Theorem (Kolmogrov's 0 - 1 law)

Let  $\{A_n\}$  be independent events and  $A \in \mathcal{T}(\{A_n\}).$  Then  $P(A) \in \{0,1\}$ 

The low for isomorphism degrees C are a Borel tailset and so satisfy Kolmogrov's 0 – 1 law. Therefore it suffices to show that the complement has positive measure to ensure  $\mu(C) = 0$ .

# Graphs are universal objects

#### Theorem (Hirschfeldt, Khoussainov, Shore, Slinko)

There is an effective coding of an arbitrary countable structure A in a computable language into a countable directed graph G(A) such that:

- $\mathcal{A} \cong \mathcal{B} \iff \mathcal{G}(\mathcal{A}) \cong \mathcal{G}(\mathcal{B})$
- $\mathcal{A}$  is computable  $\iff \mathcal{G}(\mathcal{A})$  is computable
- If  $\mathcal{A}, \mathcal{B}$  are computable and for a turing degree d,  $\mathcal{A} \cong_d \mathcal{B} \iff G(\mathcal{A}) \cong_d G(\mathcal{B})$

Therefore to show that a degree d is low for isomorphism is equivalent to showing that for every pair of computable directed graphs  $G_0, G_1$  there is a d computable isomorphism between  $G_0$  and  $G_1 \iff$  there is a computable one.

# Proof of main theorem

We build two isomorphic computable directed graphs *G* and *H* and a  $\Pi_1^0$  class  $C \subset 2^{\omega}$  such that

- $G \not\cong_{\Delta_1^0} H$
- μ(C) ≥ 1/2
- $X \in \mathcal{C} \implies X$  computes an isomorphism from  $G \rightarrow H$ .

Rest of the proof on the Black Board...

## References



Franklin, Solomon (2014) Degrees that are low for isomorphism *Computability, vol. 3* 71 – 89

Franklin, Turetsky (2019) Taking the path computably travelled Journal of Logic and Computation Vol 29 969 – 973.

# The End

# **Questions?** Comments?

◆ロ> ◆母> ◆ヨ> ◆ヨ> 「ヨ」 のへで