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What we’ll try to cover today
● Introductions
● What is a shell?
● Bash
● Starting the shell
● The command line
● Working with directories and files
● Pipes and redirection
● Working with processes
● Question and answer session
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About me

● Erik Meitner
● Systems Administrator for the Math Dept.
● Room 507
● What I do
● How I can help you
● Other IT staff: Sara Nagreen and Henry Mayes
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About you

● Name
● What was the best moment of the summer for 

you?
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What is a shell?
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A shell is

● An application
● A textual interface to the operating system
● An interpreter for a shell script
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Shells
Some Linux shells:    

● Bourne shell sh
●         Almquist shell (ash)
●             Debian Almquist shell (dash)
●         Bash (Unix shell) bash
●         KornShell ksh
●             Z shell zsh
●     C shell csh
●         TENEX C shell tcsh
●     Ch shell ch
●     Emacs shell eshell
●     Friendly interactive shell fish
●     PowerShell pwsh
●     rc shell rc, a shell for Plan 9 from Bell Labs and Unix
●     Stand-alone shell sash
●     Scheme Shell scsh

From: https://en.wikipedia.org/wiki/List_of_command-line_interpreters
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Bash

● The default shell on all our Linux servers and 
workstations

● Available on Mac OS (though TCSH is the default)
● Available on Windows 10 via the Windows 

Subsystem for Linux
● https://www.gnu.org/software/bash/

https://www.gnu.org/software/bash/
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● Starting the shell

A shell starts when you:
● Open a terminal application locally
● SSH to a remote computer
● Login to a local console(Linux)
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The command line

● Username
● Machine name
● Current directory
● Prompt character

– $
– #

● You can set your prompt to whatever you like
– PS1='C:\> '
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Man: Learn to use it
● Linux systems have built-in reference documentation. 
● The command to access is is "man", short for "manual"
● search for a man page with the -k option

– man -k edit
● View a man page:

– man nano
● Man uses the "less" command to show the manual in a paginated way. 

– Space moves forward a page
– "b" moves back a page
– "q" quits
– "/" lets you search starting at your current page
– "n" goes to the next matching text
– " N" goes to the prevous matching text
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Side note: Filesystem heirarchy
In Linux EVERYTHING IS A FILE-LIKE OBJECT!
/
├── bin 
├── boot
├── build
├── dev
├── etc
├── fac
    └── 
├── grad
    └── yourname
├── home
├── lib
├── opt
    └── intel
├── proc
├── root
├── run
├── sbin
├── scratch
├── srv
├── staff
    └── emeitner
├── sys
├── tmp
├── usr
    └── local
        └── bin
├── var
└── visitor
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Working with files and directories 1
● pwd - Print working directory
● ls - List files/directories

– ls -l
– ls -a
– ls -lS
– ls -lt

● cd - Change directory
● ~ - Alias for your home directory
● . - Alias for the current directory
● .. - alias for the parent directory of your current directory
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Working with files and directories 2

● mkdir - Make a directory
● rmdir - remove an empty directory
● rm - remove file/directory

– rm -r
● cp - copy file/directory

– cp -r
● mv - move/rename a file/directory
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Working with files and directories 3

● less - view the contents of a text file
– less fps9000.f95

● cat - send the contents of one or more files to the 
terminal
– cat file1.txt fileA.txt footer.txt

● hexdump - view the contents of any file in hexadecimal 
– hexdump -C /bin/cvt
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Editing text files

Many editors are available.
● nano - Easy to use
● joe - Easy to use, more complex than nano
● vi - available on all UNIX/Linux systems. 
● emacs - Complex and highly extensible and programmable
● ...and hundreds more...
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Pipes and redirection

● Each process has three data streams:
– stdin - Standard input, file descriptor #0
– stdout - Standard output, file descriptor #1
– stderr - Standard error, file descriptor #2

● These data streams can be redirected to/from 
files or other processes.
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Redirection
● Send the output(stdout) of a command to a file

– ls -l > listing.txt
● Send the contents of a file to a program’s input(stdin):

– wc -l < code.c
– But... wc -l code.c

● Send stdout to one file and error messages(stderr) to another
– noisy_program > log.txt 2> errors.txt
– “>” and “1>” are the same
– "2>" means redirect stderr

● Send stdout to a file and send stderr there as well
– test_app > /tmp/output.txt 2>&1
– “&1” means “wherever stdout is going”
– "2>&1" means send stderr to wherever stdout is going

● Send stdout to a file but append to the file rather than overwriting it
– tool1 >> logs/tool1.log 2>&1
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A few more commands: grep
● grep - This one would require an entire class to cover all it’s uses. I strongly suggest you get to know this 

commands basic functions. 
● grep needle haystack.txt

– looks for the text “needle” in the file haystack.txt
● grep -i dx1 libkrud.h

– looks for “dx1” in libkrud.h, ignoring case
● grep -r lost_it code/

– looks for files containing “lost_it” in the code directory recursively
● Note that by default grep uses a syntax called Regular Expressions(RE) in the search term. Some characters 

have special meaning. Unless you understand RE syntax it is best to use the -F option and always use 
quotes around the search term.

● grep -F '\right|^s' paper.tex
– In this case "\r" would have tried to match the carriage-return character(ASCII 13). The -F option prevents that.



  20

A few more commands: find

● Find looks for files.
● find .

– prints out every file and folder in the current directory, and all directories it  
contains

● find ~ -name my_keys.txt
– Looks for a file in your home directory named my_keys.txt

● find /opt/intel/ -mtime -60 -iname "*diffcalc*" -type f
– Finds all files(not directories) in /opt/intel/ modified in the last 60 days that 

contain "diffcalc" in their name
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Pipes 1

● Pipes connect the stdout of one program to the 
stdin of another

● ls /dev/ | less
● find /usr/local/matlab/  | fgrep .F
● grep -ri 'sub doThing' repo/grass/
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● Working with processes 1

● w - show who is logged in now
● last -10   -  show last 10 users to log in
● ps - list running processes
● kill - stop a process
● top - watch a continuously updating sorted list of processes
● nice - starts a process at a non-default priority 
● renice - changes the priority of a running process
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● Working with processes: w and last

● w
● last -10

– Show last 10 people to log in
● who

– similar to w
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● Working with processes: ps
● ps

– list your processes that were started by your current shell
● ps -f   

– same but with more details
● ps -ef  

– show all system processes in with more detail
● ps -U emeitner   

– Shows ALL my processes
● ps -ef | grep -F parallel_test

– Lists all processes and matches lines that contain "parallel_test"
● ps -U kfrog | grep -F demo1 | wc -l

– Lists all processes run by user kfrog, matches those lines containing demo1, the counts the number of lines
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● Working with processes: kill
● kill 342342

– kill process ID 342342 using the default TERM(terminate) signal
● kill 342342 45433 34533

– kill a number of processes
● Hm... PID 342342 didn't stop.
● Kill -INT 342342

– Try the INT signal(interrupt)
● Hmm.. still running.
● kill -HUP 342342

– Try the HUP(hangup) signal
● Ok. Process ID 342342 is broken. The code should be fixed. But for now lets just stop it at all costs - even data 

loss
● kill -KILL 342342 
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● Working with processes: top
● Shows you whats consuming the most system resources. By default it shows CPU usage.
● "q" to quit
● "h" for help, "ESC" to exit help
● PID - Process ID
● USER - Owning user
● PR - Priority of the process assigned by the Linux kernel
● NI - Niceness. A user alterable priority. Values from -20 to 19. Lower is "nicer"
● VIRT - The total amount of virtual memory used by the task.(KiB)  It includes all  code,  data  and shared  libraries
● RES - Resident Memory Size (KiB)  A subset of the virtual address space  (VIRT)  representing  the  non-swapped  physical  memory  a  task  is  currently 

using.
● SHR - Shared Memory Size (KiB)
● S - Status. D = uninterruptible sleep, I = idle, R = running, S = sleeping, T = stopped by job control signal, t = stopped by debugger during trace, Z = zombie
● %CPU - The  task's  share of the elapsed CPU time since the last screen update, expressed as a percentage of total CPU time. By default it shows % of CPU 

time used on the single CPU core a process is using.
● %MEM - A task's currently resident share of available physical memory
● TIME+  - Total CPU time the task has used since it started.
● COMMAND - The program being run by the process
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● Working with processes: nice/renice

● All user processes start with a niceness of 0 by default.
● nice my_app

– runs my_app at a niceness of 10
● nice -n 19 your_app

– runs your_app with a niceness of 19(lowest priority)
● renice -n 5 -p 2345334

– Sets niceness of running process with PID 2345334 to 5
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Some helpful links

● Bash reference manual, 
https://www.gnu.org/software/bash/manual/html
_node/index.html

● Linux command line for you and me, 
https://lym.readthedocs.io/en/latest/index.html

●
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Notes from today

● Will be posted on the Math Dept. wiki:
https://wiki.math.wisc.edu/

● Search for “lunch and learn”

https://wiki.math.wisc.edu/
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Next time

● Time, date, and topic to be announced on the 
mailing list

● To join the list send an email to: 
math-linux-help+join@g-groups.wisc.edu

mailto:math-linux-help+join@g-groups.wisc.edu
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Contacting me

● You can always contact me directly with 
questions:
emeitner@math.wisc.edu
608-263-4189(office)

● Or stop by my office:
Van Vleck room 507

mailto:emeitner@math.wisc.edu
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           Thank you
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