

Using Linux Lunch and Learn
#2: Bash

 __
(ps -e -o pid,user,pcpu,cmd|sort -r -n -k3|head)
 --
 \
 \
 .--.
 |o_o |
 |:_/ |
 // \ \
 (| |)
 /'_ _/`\
 ___)=(___/

v

 2

What we’ll try to cover today
● Introductions
● What is a shell?
● Bash
● Starting the shell
● The command line
● Working with directories and files
● Pipes and redirection
● Working with processes
● Question and answer session

 3

About me

● Erik Meitner
● Systems Administrator for the Math Dept.
● Room 507
● What I do
● How I can help you
● Other IT staff: Sara Nagreen and Henry Mayes

 4

About you

● Name
● What was the best moment of the summer for

you?

 5

What is a shell?

 6

A shell is

● An application
● A textual interface to the operating system
● An interpreter for a shell script

 7

Shells
Some Linux shells:

● Bourne shell sh
● Almquist shell (ash)
● Debian Almquist shell (dash)
● Bash (Unix shell) bash
● KornShell ksh
● Z shell zsh
● C shell csh
● TENEX C shell tcsh
● Ch shell ch
● Emacs shell eshell
● Friendly interactive shell fish
● PowerShell pwsh
● rc shell rc, a shell for Plan 9 from Bell Labs and Unix
● Stand-alone shell sash
● Scheme Shell scsh

From: https://en.wikipedia.org/wiki/List_of_command-line_interpreters

 8

Bash

● The default shell on all our Linux servers and
workstations

● Available on Mac OS (though TCSH is the default)
● Available on Windows 10 via the Windows

Subsystem for Linux
● https://www.gnu.org/software/bash/

https://www.gnu.org/software/bash/

 9

● Starting the shell

A shell starts when you:
● Open a terminal application locally
● SSH to a remote computer
● Login to a local console(Linux)

 10

The command line

● Username
● Machine name
● Current directory
● Prompt character

– $
– #

● You can set your prompt to whatever you like
– PS1='C:\> '

 11

Man: Learn to use it
● Linux systems have built-in reference documentation.
● The command to access is is "man", short for "manual"
● search for a man page with the -k option

– man -k edit
● View a man page:

– man nano
● Man uses the "less" command to show the manual in a paginated way.

– Space moves forward a page
– "b" moves back a page
– "q" quits
– "/" lets you search starting at your current page
– "n" goes to the next matching text
– " N" goes to the prevous matching text

 12

Side note: Filesystem heirarchy
In Linux EVERYTHING IS A FILE-LIKE OBJECT!
/
├── bin
├── boot
├── build
├── dev
├── etc
├── fac
 └──
├── grad
 └── yourname
├── home
├── lib
├── opt
 └── intel
├── proc
├── root
├── run
├── sbin
├── scratch
├── srv
├── staff
 └── emeitner
├── sys
├── tmp
├── usr
 └── local
 └── bin
├── var
└── visitor

 13

Working with files and directories 1
● pwd - Print working directory
● ls - List files/directories

– ls -l
– ls -a
– ls -lS
– ls -lt

● cd - Change directory
● ~ - Alias for your home directory
● . - Alias for the current directory
● .. - alias for the parent directory of your current directory

 14

Working with files and directories 2

● mkdir - Make a directory
● rmdir - remove an empty directory
● rm - remove file/directory

– rm -r
● cp - copy file/directory

– cp -r
● mv - move/rename a file/directory

 15

Working with files and directories 3

● less - view the contents of a text file
– less fps9000.f95

● cat - send the contents of one or more files to the
terminal
– cat file1.txt fileA.txt footer.txt

● hexdump - view the contents of any file in hexadecimal
– hexdump -C /bin/cvt

 16

Editing text files

Many editors are available.
● nano - Easy to use
● joe - Easy to use, more complex than nano
● vi - available on all UNIX/Linux systems.
● emacs - Complex and highly extensible and programmable
● ...and hundreds more...

 17

Pipes and redirection

● Each process has three data streams:
– stdin - Standard input, file descriptor #0
– stdout - Standard output, file descriptor #1
– stderr - Standard error, file descriptor #2

● These data streams can be redirected to/from
files or other processes.

 18

Redirection
● Send the output(stdout) of a command to a file

– ls -l > listing.txt
● Send the contents of a file to a program’s input(stdin):

– wc -l < code.c
– But... wc -l code.c

● Send stdout to one file and error messages(stderr) to another
– noisy_program > log.txt 2> errors.txt
– “>” and “1>” are the same
– "2>" means redirect stderr

● Send stdout to a file and send stderr there as well
– test_app > /tmp/output.txt 2>&1
– “&1” means “wherever stdout is going”
– "2>&1" means send stderr to wherever stdout is going

● Send stdout to a file but append to the file rather than overwriting it
– tool1 >> logs/tool1.log 2>&1

 19

A few more commands: grep
● grep - This one would require an entire class to cover all it’s uses. I strongly suggest you get to know this

commands basic functions.
● grep needle haystack.txt

– looks for the text “needle” in the file haystack.txt
● grep -i dx1 libkrud.h

– looks for “dx1” in libkrud.h, ignoring case
● grep -r lost_it code/

– looks for files containing “lost_it” in the code directory recursively
● Note that by default grep uses a syntax called Regular Expressions(RE) in the search term. Some characters

have special meaning. Unless you understand RE syntax it is best to use the -F option and always use
quotes around the search term.

● grep -F '\right|^s' paper.tex
– In this case "\r" would have tried to match the carriage-return character(ASCII 13). The -F option prevents that.

 20

A few more commands: find

● Find looks for files.
● find .

– prints out every file and folder in the current directory, and all directories it
contains

● find ~ -name my_keys.txt
– Looks for a file in your home directory named my_keys.txt

● find /opt/intel/ -mtime -60 -iname "*diffcalc*" -type f
– Finds all files(not directories) in /opt/intel/ modified in the last 60 days that

contain "diffcalc" in their name

 21

Pipes 1

● Pipes connect the stdout of one program to the
stdin of another

● ls /dev/ | less
● find /usr/local/matlab/ | fgrep .F
● grep -ri 'sub doThing' repo/grass/

 22

● Working with processes 1

● w - show who is logged in now
● last -10 - show last 10 users to log in
● ps - list running processes
● kill - stop a process
● top - watch a continuously updating sorted list of processes
● nice - starts a process at a non-default priority
● renice - changes the priority of a running process

 23

● Working with processes: w and last

● w
● last -10

– Show last 10 people to log in
● who

– similar to w

 24

● Working with processes: ps
● ps

– list your processes that were started by your current shell
● ps -f

– same but with more details
● ps -ef

– show all system processes in with more detail
● ps -U emeitner

– Shows ALL my processes
● ps -ef | grep -F parallel_test

– Lists all processes and matches lines that contain "parallel_test"
● ps -U kfrog | grep -F demo1 | wc -l

– Lists all processes run by user kfrog, matches those lines containing demo1, the counts the number of lines

 25

● Working with processes: kill
● kill 342342

– kill process ID 342342 using the default TERM(terminate) signal
● kill 342342 45433 34533

– kill a number of processes
● Hm... PID 342342 didn't stop.
● Kill -INT 342342

– Try the INT signal(interrupt)
● Hmm.. still running.
● kill -HUP 342342

– Try the HUP(hangup) signal
● Ok. Process ID 342342 is broken. The code should be fixed. But for now lets just stop it at all costs - even data

loss
● kill -KILL 342342

 26

● Working with processes: top
● Shows you whats consuming the most system resources. By default it shows CPU usage.
● "q" to quit
● "h" for help, "ESC" to exit help
● PID - Process ID
● USER - Owning user
● PR - Priority of the process assigned by the Linux kernel
● NI - Niceness. A user alterable priority. Values from -20 to 19. Lower is "nicer"
● VIRT - The total amount of virtual memory used by the task.(KiB) It includes all code, data and shared libraries
● RES - Resident Memory Size (KiB) A subset of the virtual address space (VIRT) representing the non-swapped physical memory a task is currently

using.
● SHR - Shared Memory Size (KiB)
● S - Status. D = uninterruptible sleep, I = idle, R = running, S = sleeping, T = stopped by job control signal, t = stopped by debugger during trace, Z = zombie
● %CPU - The task's share of the elapsed CPU time since the last screen update, expressed as a percentage of total CPU time. By default it shows % of CPU

time used on the single CPU core a process is using.
● %MEM - A task's currently resident share of available physical memory
● TIME+ - Total CPU time the task has used since it started.
● COMMAND - The program being run by the process

 27

● Working with processes: nice/renice

● All user processes start with a niceness of 0 by default.
● nice my_app

– runs my_app at a niceness of 10
● nice -n 19 your_app

– runs your_app with a niceness of 19(lowest priority)
● renice -n 5 -p 2345334

– Sets niceness of running process with PID 2345334 to 5

 28

Some helpful links

● Bash reference manual,
https://www.gnu.org/software/bash/manual/html
_node/index.html

● Linux command line for you and me,
https://lym.readthedocs.io/en/latest/index.html

●

 29

Notes from today

● Will be posted on the Math Dept. wiki:
https://wiki.math.wisc.edu/

● Search for “lunch and learn”

https://wiki.math.wisc.edu/

 30

Next time

● Time, date, and topic to be announced on the
mailing list

● To join the list send an email to:
math-linux-help+join@g-groups.wisc.edu

mailto:math-linux-help+join@g-groups.wisc.edu

 31

Contacting me

● You can always contact me directly with
questions:
emeitner@math.wisc.edu
608-263-4189(office)

● Or stop by my office:
Van Vleck room 507

mailto:emeitner@math.wisc.edu

 32

 Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

