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Introduction

The first 10 perfect squares are

1, 4, 9, 16, 25, 36, 49, 64, 81, 100
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Introduction

An arithmetic progression is a sequence

a, a + q, a + 2q, . . .

Question: How many of the numbers in an arithmetic
progression can be squares?
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Examples

1, 25, 49

a = 1, q = 24

289, 625, 961

a = 289, q = 336

529, 1369, 2209

a = 529, q = 840
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Notation

Fix q, a > 0

Q(N; q, a) is number of perfect squares a + qn with
0 ≤ n < N

Q(N) is maximum over all a and all q
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Rudin’s Conjecture

Conjecture

Q(N) = O(
√

N)

This means that there is a constant C such that
Q(N) ≤ C

√
N, at least for N big enough

This is a uniform bound – the constant does not depend on
the particular arithmetic progression
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Approach

Two step process

1 There can not be “long” arithmetic progressions of squares

2 Use this packing information to perform some combinatorics
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Approach

First manifestation

1 There are no four squares in an arithmetic progression (Euler)

Counting rational points on curves

2 Large sets must contain long arithmetic progressions

Szemerédi’s theorem
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4 Squares in AP

a2, b2, c2, d2 are in an AP if and only if

b2 − a2 = c2 − b2 = d2 − c2

A little algebra gives

a2 + c2 = 2b2, b2 + d2 = 2c2

Upshot: (a : b : c : d) ∈ P3(Q) lies on a projective curve
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Aside on point counting

Let C/Q be a projective curve of genus g .

g = 0: C (Q) is infinite

g = 1: C (Q) is a finitely generated abelian group

g > 1: C (Q) is finite
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4 Squares in AP

Curve in P3 with equations

a2 + c2 = 2b2, b2 + d2 = 2c2

8 silly points (1 : ±1 : ±1 : ±1)

g = 1 (adjunction)

Can be written in Weierstrass form

y2 = x3 − x2 − 4x + 4

by projecting onto P2

Brandon Boggess

Squares in Arithmetic Progressions



4 Square in AP

y2 = x3 − x2 − 4x + 4

Torsion subgroup is Z/8Z (8 silly points)

Rank is 0, so no 4 squares in arithmetic progression!
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Szemerédi’s Theorem

Theorem

Let δ > 0. There exists N such that every subset of {1, . . . ,N} of
size δN has a four term arithmetic progression.

Apply to {n ≤ N | qn + a is a square}. Implies that Q(N) = o(N)
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Proposition

Q(N) = o(N)

Still a long way off of conjectured O(N1/2)

Behrend: Szemerédi’s argument cannot be used to get a
smaller power
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Bombieri-Granville-Pintz

Try to use simpler combinatorics and more complicated arithmetic
geometry

Theorem

Q(N) = O(N2/3(log N)c2)
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Outline

0 N

Idea: “Most” boxes have a bounded number of points

A box with five squares gives a point on a curve of genus 5

By picking boxes of just the right size, get a good bound

WARNING: these points are not all on the same curve, and
number of curves depends on the size of the boxes
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Outline

0 N
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Close Squares

Let 1 ≤ k1 < . . . < kr integers

If b, b + k1d , . . . , b + krd are all squares, (b, d) is a point on a
curve C~k

of genus

(r − 3)2r−2 + 1

r = 3 and (ki ) = (1, 2, 3) is 4 squares in AP

We will consider points on many of these curves at once!
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Recall

Let C/Q be a projective curve of genus g .

g = 0: C (Q) is infinite

g = 1: C (Q) is a finitely generated abelian group

g > 1: C (Q) is finite

Smallest r for which curve has genus at least 2 is r = 4 (genus 5)
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All genus 5 curves have finitely many rational points

In order to get an improved upper bound, need something
even stronger

Theorem (Faltings,Vojta,Bombieri)

Let C/Q be a curve of genus at least 2. There is an explicit upper
bound for C (Q) in terms of the coefficients of the equations
defining C and the rank of the Jacobian of C .
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Jacobians of Curves

The Jacobian of a curve C is an abelian variety containing C

The dimension of J is the genus of G

J(Q) is a finitely generated abelian group

E.g. if C is an elliptic curve, J ' C
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Jacobians in BGP

The Jacobians of C~k
are products of elliptic curves

In fact, these elliptic curves have full 2 torsion!

y2 = (x − e1)(x − e2)(x − e3)

2-descent lets you bound the ranks of the elliptic curves (cf
Silverman)

Brandon Boggess

Squares in Arithmetic Progressions



Jacobians in BGP

The Jacobians of C~k
are products of elliptic curves

In fact, these elliptic curves have full 2 torsion!

y2 = (x − e1)(x − e2)(x − e3)

2-descent lets you bound the ranks of the elliptic curves (cf
Silverman)

Brandon Boggess

Squares in Arithmetic Progressions



Jacobians in BGP

The Jacobians of C~k
are products of elliptic curves

In fact, these elliptic curves have full 2 torsion!

y2 = (x − e1)(x − e2)(x − e3)

2-descent lets you bound the ranks of the elliptic curves (cf
Silverman)

Brandon Boggess

Squares in Arithmetic Progressions



This is used to prove

Corollary

Fix ε > 0. If 1 ≤ k1 < · · · < k4 ≤ N, then there are at most CNε

squares of the form b, b + k1d , . . . , b + k4d with d larger than
some explicit constant. Here C depends only on ε

This is an explicit bound on the number of boxes which can
contain 5 squares
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Corollary

Fix ε > 0. If 1 ≤ k1 < · · · < k4 ≤ N, then there are at most CNε

squares of the form b, b + k1d , . . . , b + k4d with d larger than
some explicit constant. Here C depends only on ε

0 NM 2M 3M · · ·

If one box has 5 squares, get b, b + k1d , . . . , b + k4d all
squares with 1 ≤ k1 < · · · < k4 ≤ M

By the theorem, at most M4+ε of these

Boxes with few squares contribute at most N/M

In total: N/M + M4+ε
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This only gets you Q(N) = O(N4/5+ε)

A sieve technique brings the exponent down to 2/3 + ε

Same techniques work for kth powers in APs, except elliptic
curves don’t have 2-torsion!

Descent must be done over cyclotomic fields
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