## Math 764. Homework 5

Due Wednesday, March 25th

- 1. Let X be a curve of genus one. Show that X is parallelizable (i.e., its tangent bundle is trivial) without using explicit representation of X as a planar cubic.
- **2.** Let  $f: X \to Y$  be a morphism between smooth varieties. Show that the derivative of f induces a map between vector bundles TX and  $f^*TY$  (the pullback of TY via f).
- **3.** Let  $f: X \to Y$  be a non-constant morphism of smooth curves. For every point  $x \in X$ , let t be a local parameter at its image  $f(x) \in Y$ ; the order of zero of the composition  $t \circ f$  at x is called the *ramification index* at x. If the ramification index is greater than one, we call x a *ramification point* of f (and f(x) a *branch point*).

Show that f has a ramification at x if and only if its derivative at x

$$f'(x): T_x X \to T_{f(x)} Y$$

is zero.

**4.** Continuing in the situation of the previous problem, we say that f is *separated* if the induced field extension  $k(X) \supset k(Y)$  (which is automatically finite because the two fields have the same transcendence degree) is separated.

Show that f is separated if and only if it has finitely many ramification points.

(Remark: this can be generalized to higher dimension: if  $f: X \to Y$  is a dominant map between smooth varieties of the same dimension, its ramification locus is the set of points where its derivative fails to be invertible. The ramification locus is always a closed subset of X; it is a proper subset if and only if f is separable).

**5.** Let X be a curve, and E a vector bundle on X. Recall that the top exterior power  $L := \wedge^{\text{rk}(E)} E$  is a line bundle.

The *degree* of the vector bundle E is defined to be the degree of L: deg(E) = deg(L).

Given two vector bundles  $E_1$ ,  $E_2$  on X, find formulas for degrees and ranks of vector bundles  $\deg(E_1^{\vee})$ ,  $\deg(E_1 \oplus E_2)$ , and  $\deg(E_1 \otimes E_2)$  in terms of degrees and ranks of  $E_1$  and  $E_2$ .

**6.** Let  $X_1$  and  $X_2$  be projective varieties, and let  $E_1$  and  $E_2$  be vector bundles on  $X_1$  and  $X_2$ , respectively. The *external tensor product*  $E_1 \boxtimes E_2$  is defined by

$$E_1 \boxtimes E_2 = p_1^* E_1 \otimes p_2^* E_2;$$

here  $p_{1,2}: X_1 \times X_2 \to X_{1,2}$  are the two projections. Informally,  $E_1 \boxtimes E_2$  is the vector bundle whose fiber over  $(x_1, x_2) \in X_1 \times X_2$  is  $(E_1)_{x_1} \otimes (E_2)_{x_2}$ .

Prove a version of the Künneth formula that provides a natural isomorphism

$$\Gamma(X_1 \times X_2, E_1 \boxtimes E_2) \simeq \Gamma(X_1, E_1) \otimes \Gamma(X_2, E_2).$$

(Projectivity of varieties is not really required here, but it might make the argument simpler.)