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1. Sept. 4

Crowning achievement: Riemann-Roch theorem; basic theort of affine and projective algebraic varieties.
Not much talk about schemes.

Approach with varieties is followed by Shafarevich (Basic Algebraic Geometry), also Milne’s notes.

1.1. What is Algebraic Geometry? Different geometries are roughly distinguished by the types of func-
tions used to study them. Algebraic Geometry deals with the geometry of polynomial functions. Good news:
polynomials are simple; bad news: there are very few polynomial functions (e.g. solving differential equations
doesn’t work, though AG has passive aggressive way of dealing with it: D-modules studies them without
solving them). So Algebraic Geometry is more rigid: no nice deformations (again not enough functions).

Example. Consider graph of x2 + y2 = 1. This has a parametrization{
x = cos t

y = sin t

which is not allowed. However, project (x, y) onto the line (0, u) through the east point (−1, 0) and it looks
like: 

x =
1− u2

1 + u2

y =
2u

1 + u2.
Claim: algebraic parametriation has nice properties the arclength parametrization does not.

(1) Find all (x, y) ∈ Q2 such that x2 + y2 = 1. Answer: if and only if u ∈ Q.
(2) How many solutions does x2 + y2 = 1 have in Z/43Z? Answer is 43 + 1, obtained by{(

1− u2

1 + u2
,

2u

1 + u2

)
: u ∈ Z/43Z}

}
, plus the point {(−1, 0)}.

Exercise. How many solutions in Z/41Z? The answer is not 1 + 41.

(3) Consider the integral ∫
x2+y2=1

P (x, y)dx+Q(x, y)dy

where P and Q are rational.
Arclength parametrization gives

∫
R(sin(t), cos(t))dt which is not nice.

Rational parametrization gives
∫
R̃(u)du where R̃ is a rational function.

There are two ways to teach this course: through analysis, which restricts to filed of real numbers, and
algebraic, which we will take. Our main tool will be (commutative) algebra, which works over any field.

What will we study? What we study changes.

(1) Algebraic sets
(2) Algebraic varieties
(3) Algebraic schemes
(4) Algebraic stacks

(5)
...
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1.2. Algebraic sets. Fix the ground field k. Assume also that k = k̄ (algebraically closed).

Definition. n-dimensional affine space is kn. Polynomial functions are f ∈ k[x1, . . . , xn]. An algebraic
subset X ⊂ kn is the common zero locus of a set S ⊂ k[x1, . . . , xn].

Example. Plane curves: x2 + y2 − 1 = 0, xy − 1 = 0 (both smooth), y2 − x3 = 0 (singular), Non-planar
twisted cubic z − x3 = 0, y − x2 = 0. Also (smooth) surface z − (x2 − y2) = 0.

Notation. Given S ⊂ k[x1, . . . , xn], define V (S) = {x ∈ kn : f(x) = 0 for all f ∈ S}. (some books use
Z(S)). E.g.

• kn ⊃ kn = Z({0}) = Z(∅);
• kn ⊃ ∅ = Z({1}) = Z(k[x1, . . . , xn]).

Remark. System of equations for an algerbaic set X is not unique.

Example 1. V (z, x2 + y2 − 1) = V (z, x2 + y2 − 1, 2z, z + (x2 + y2 − 1), z(x3 − y + z)).

Lemma. If two functions f1 and f2 vanish at some point, then so does gf1 + gf2 for all f, g ∈ {x1, . . . , xn}.
Put J = the ideal generated by S ⊂ k[x1, . . . , xn], then V (S) depends only on J , not on S.

Corollary. Hilbert basis theorem guarantees that the polynomial ring is Noetherian, so the ideal J is finitely
generated so V (S) = V (J) = V ({f1, . . . , fm}). So every algebraic set is the zero locus of a finite collection

Example 2. V (x) = V (x2) both determine the same vanishing set, but (x) 6= (x2) ⊂ k[x, y].

Theorem (Hilbert’s Nullstellensatz). If a f |V (j) = 0 for a (possibly improper) ideal J ⊂ k[x1, . . . , xnb], then

fk ∈ J for some k. (this is strong, requires k be algebraically closed)

Remark. Recall that rad(J) = {f ∈ R : fk ∈ J for some k}.
(1) rad J is an ideal;
(2) rad radJ = rad J ;
(3) rad J =

⋂
p : J⊂p⊂R p.

Notation. For a subset X ⊂ kn, set I(X) ⊂ k[x1, . . . , xn] the set {f : f |X = 0}.

Theorem (Nullstellensatz). I(V (J)) = rad J .

Corollary. I and V give bijection between algebrais subsets of kn and radical ideals of k[x1, . . . , xn].

Example (of Nullstellensatz). V (J) = ∅ if and only if 1|V (J) = 0 if and only if 1k ∈ J if and only if J = (1).
Non-geometric statement: f1, . . . , fk have no common zeroes if and only if

∑
gifi = 1, gi ∈ k[x1, . . . , xn].

Exercise. Properties of V and I.

• S1 ⊂ S2 implies V (S1) ⊃ V (S2);
• X1 ⊂ X2 implies I(X1) ⊃ I(X2);
• I(∅) = k[x1, . . . , xn] and I(kn) = 0;
• V (k[x1, . . . , xn]) = ∅ and V (0) = kn;
• I(V (S)) = rad 〈S〉;
• V (I(X)) is the smallest algebraic set containing X;
• Given any family Si ⊂ k[x1, . . . , xn], we should have

⋂
V (Si) = V (

⋃
Si);

• Given S1 and S2, V (S1) ∪ V (S2) = V (S1S2) (finitely many is important).

2. September 6

2.1. Nullstellensatz.

Theorem ((Strong) Nullstellensatz). I(V (J)) = rad J

Lemma (Zariski’s Lemma (Algebraic Nullstellensatz). Let k be a field (not neceesarily algebraically closed),
K ⊃ k a finitely generated algebra that is a field. Then [K : k] <∞.



NOTES FOR MATH 763: INTRODUCTION TO ALGEBRAIC GEOMETRY FALL 2012 3

Example. Take K = k[x]. This is not a finitely generated k-algebra.
How could it be finitely generated? Take f1, . . . , fm ∈ K. If these generate the algebra, then any rational

function is of the form P (f1, . . . , fn) for some polynomial P ∈ k[t1, . . . , tm]. But any such polynomial gives
a rational function with a particular denominator. This denominator is a product of irreducible factors of
denominators of f1, . . . , fm.

Proof. Suppose K is a transcendental field that is finitely generated k-algebra. Then K = k(y1, . . . , yn), and
without loss of generality we may assume that K is algebraic over k(y1) (otherwise replace k with k(y1)).

Then [K : k(y1)] <∞, while y1 is transcendental over k. Choose a basis e1, . . . , em of K over k(y1) . Then
eiej =

∑
ckijek for ckij ∈ k(y1).

Take fi =
∑
gji ej ∈ K (finite). Then for any polynomial P evaluated like P (f1, . . . , fl) =

∑
hiei, and the

only denominators of the finitely many ckij and the finitely many coefficients gji contribute to the denominators
of hi. �

Corollary. Suppose k = k̄. Then maximal ideals in k[x1, . . . , xn] are exactly of the form (x1 − a1, . . . , xn −
an) = I( for some (a1, . . . , an0) ∈ kn.

Proof. J ⊂ k[x1, . . . , xn] is maximal if and only if k[x1, . . . , xn]/J is a field, so it is a finitely generated
algebra, which implies by Zariski’s lemma that the quotient is k̄ = k. Hence, J = ker(φ : k[x1, . . . , xn]→ k)
and such a kernel sends xi → ai so kernel is (x1 − a1, . . . , xn − an) (which is evidently maximal). �

Remark. Same argument shows that if k 6= k̄, then maximal ideals are kernels of evalation homomrphisms
onto k̄. For example, R[x, y]/

〈
x2 + 1, y2 + 1

〉
= C⊗R C which is not a field.

Theorem (Weak Nullstellensatz). For ideal J ⊂ k[x1, . . . , xn] we have J = 〈1〉 if and only if V (J) = ∅.

Proof. If this happens, then J is not contained in a maximal ideal of k[x1, . . . , xn], i.e. not in (x1−a1, . . . , xn−
an) for any a1, . . . , an, i.e. (a1, . . . , an) 6∈ V (J) for any (a1, . . . , an) ∈ kn. �

Remark. Points of V (J) are in bijection with maximal ideals containing J .

Proof of strong Nullstellensatz (by Rabinowitsch’s Trick). Given an ideal J ⊂ k[x1, . . . , xn] and F |V (J) = 0,
we want to show that F ∈ rad J .

Let J = (f1, . . . , fm).
Consider k[x0, . . . , xn] 3 f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), f0 = x0 · F (x1, . . . , xn)− 1.
Claim: the system fi = 0 is inconsistent, i.e. there are no solutions.
Why? Because f1 = f2 = · · · = fm = 0 we see that (x1, . . . , xn) ∈ V (J), so F (x1, . . . , xn) = 0, but f0 is

not 0.
By Weak Nullstellensatz, g0f0 +

∑m
i=1 gifi = 1 where f0, gi ∈ k[x0, . . . , xn] for all i, but fi ∈ k[x1, . . . , xn]

for i > 0.

Now, assuming F 6= 0, plug in (formally) x0 =
1

F [x1, . . . , xn]
∈ k(x1, . . . , xn).

Then in the k(x1, . . . , xn), we get
∑m
i=1 gi(

1
F , x1, . . . , xn)fi = 1. Clearing the denominator, we get some

power of F in J . �

Remark. Consider I(V (J)). We have (a1, . . . , an) ∈ V (J) if and only if J ⊂ (x1− a1, . . . , xn− an). Hence,
f ∈ I(V (J)) if and only if f ∈ m for all maximal ideals m ⊂ J . So I(V (J)) =

⋂
m⊃J m = radJ =

⋂
p⊃J p.

Summary: V and I give an inclusion reversing bijectino between radical ideals in k[x1, . . . , xn] and
algebraic subsets X ⊂ kn.

Exercise.

• V (
∑
Ji) =

⋂
V (Ji)

• V (J1 · J2) = V (J1) ∪ V (J2)
• V (J1 ∩ J2) = V (J1) ∪ V (J2)

Note that even if rad Ji = Ji, then
∑
Ji and J1 · J2 need not be radical, but the intersection is radical. In

particular, rad(J1 · J2) = J1 ∩ J2 if J1 and J2 are radical.
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Example. Let J1 = 〈y〉 , J2 =
〈
y − x2

〉
⊂ k[x, y]. These are radical because they are principal over square-

free (irreducible in fact) polynomials.
J1 + J2 =

〈
y, y − x2

〉
=
〈
y, x2

〉
. Its radical is in fact 〈x, y〉.

The picture is a parabola and the x-axis intersecting. The sum ideal
〈
y, x2

〉
remembers that the intersec-

tion should be in some sense multiplicty 2 (as it is not transversal).

2.2. Zariski topology.

Definition. The Zariski topology on kn is the topology whose closed sets are algebraic sets.

Example. On k1 any proper algebraic subset of (algebraically closed) field is finite, so the topology is
co-finite.

Remark. Obviously for C we get fewer open sets than in the usual topology. Also, if X ⊂ kn, then
X ⊂ V (I(X)) and the latter is not only the smallest algebraic set containing X, but is the closure of X in
the Zariski topology.

Example. So any infinite set is dense in k1.

3. September 11

Last time we proved the Nullstellensatz. (Note that in Zariski’s lemma, for the choice of basis {e1, . . . , em}
of k(x1, . . . , xn) over k(x1), it is important to assume e1 = 1; why?)

We also introduced the Zariski topology on kn in which closed subsets=algebraic subsets. There are very
few open/closed sets, so any non-empty open subset is dense.

3.1. Regular function and regular maps. Let X ⊂ kn be an algebraic set.

Definition. An algebriac/regular function f : X → k if f is the restriction of a polynomial in k[x1, . . . , xn].
The coordinate ring of X, k[X], is the k-algebra generated by regular functions on X. In particular,

k[X] = k[x1, . . . , xn]/I(X).

Example. If X = kn, then k[X] = k[x1, . . . , xn]. If X = ∅, k[X] = 0 (the zero-dimensional k-algebra)
If X = V (y) ⊂ k2 (the x-axis), then k[X] = k[x, y]/(y) = k[x].

Proposition. k[X] is a finitely generated k-algebra with no nilpotents. Conversely, any finitely generated
k-algebra with no nilpotents is the coordinate ring of some X.

Proof. It follows from the Nullstellensatz. �

Definition. Let X be an algebraic set. For a subset Y ⊂ X, consider I(Y ) = {f ∈ k[X] : f |Y = 0}. This is
radical in k[X]. Conversely, for a subset S ⊂ k[X], consider V (S) = {x ∈ X : f(x) = 0 for all f ∈ S}. This
is an algebraic subset of X.

Theorem. For any J ⊂ k[X], I(V (J)) = rad J .

Proof. Exercise. �

Consequently, we have the same bijection between algebraic subests of X and radical ideals of k[X]. Why?
Because Y ⊂ X ⊂ kn gives k[x1, . . . , xn] ⊃ I(Y ) ⊃ I(X) where I(Y ) and I(X) are radical. Again points of
X are maximal ideals of k[X].

Definition. Let X ⊂ kn and Y ⊂ km be algebraic subsets.
A map F : X → Y is regular/algebraic if F = (f1, . . . , fn) is such that fi ∈ k[X] for all i.
In particular, a regular map X → k1 is a regular function.

Example. Let X = V (y − x2) ⊂ k2 (a parabola). Then the projection (onto the x-axis) X → k defined by
sending (x, y) → x is a regular map. This map is a bijection, with inverse map that happens to also be a
regular map as it is given by t→ (t, t2). We may call such a map biregular.

We actually get a category whose objects are algebraic subsets X ⊂ kn for any n, and morphisms are
regular maps f : X → Y .

Corollary. For any F : X → Y , we get F ∗ : k[Y ]→ k[X] which sends f → f ◦F (a contravariant functor).



NOTES FOR MATH 763: INTRODUCTION TO ALGEBRAIC GEOMETRY FALL 2012 5

Example.

(1) f : X → k1 = Y . Then f ∈ k[X] so setting t = f(x1, . . . , xn), we get f∗ : k[t] = k[Y ] → k[X] by
g(t)→ g(f).

(2) If X = k0 → Y (a point in Y ), then k[Y ]→ k is evaluation at point of Y .

Theorem. Any algebra homomoropshim k[Y ]→ k[X] is of the form F ∗ for a unique regular map F : X → Y .

Proof. Suppose Y = V (g1, . . . , gl) ⊂ km.

A regular map F : X → Y is given by (f1, . . . , fm) such that


g1(f1, . . . , fm) = 0
...

gl(f1, . . . , fm = 0

.

Given f1, . . . , fm we get k[x1, . . . , xn] → k[X] by g → g(f1, . . . , fm). Actually, we may as well assume
that I(Y ) = 〈g1, . . . , gl〉 ⊂ k[x1, . . . , xm]. Then the above map has to factor through to k[Y ]→ k[X]. �

Remark. Explicit construction of F given φ : k[Y ]→ k[X]. We have know that maximal ideals of k[X] are
precisely points of X, and maximal ideals of k[Y ] are preciisely points of Y . If F : X → Y , then the map
from maximal ideals to maximal ideals is m→ φ−1(m).

Reformulation: we get an anti-equivalence between the category of algebraic sets and the category of
finitely generated k-algebras with no nilpotents.

3.2. Affine Varieties.

Remark (Terminology). An affine variety =“abstract algebraic set”. An algebraic set=affine variety em-
bedded into kn.

Definition (Temporary). An affine variety is a pair (X,R) where X is a set and R is an algebra of k-valued
functions on X such that:

(1) R is finitely generated (no nilpotents because elements are functions to k);
(2) points in X are in one-to-one correspondence with maximal ideals of R.

A morphism/regular map of two affine varieties (X1, R1) → (X2, R2) is a map F : X1 → X2 such that
f ◦ F ∈ R1 if f ∈ R2.

Example. If X is an algebraic set, (X,k[X]) is an affine variety.

Remark. Any affine variety is isomorphic to an algebraic set. So we really have an equivalence of categories
of algebraic sets, affine varieites, and finitely generated k-algebras with no morphisms (equivalence to k-
algebras is an anti-equivalence).

Given R =finitely generated algebra with no nilpotents. Define affine variety as follows. X = Specm(R) =
{maximal ideals of R}. Given a point m ∈ X and an element of R, consider f +m ∈ R/m. Then by Zariski’s
lemma, the quotient if actually k, so we can define that to be the value of f at m.

4. September 13

4.1. Affine varieties revisited. Last time: A map of algebraic sets F : X → Y is algebraic/regular if
its components are polynomials. The main result is that we can associate to every algebraic variety X its
coordinate ring k[X] = {regular functions X → k1} which gives an anti-equvialence between the category
of algebraic sets and the category of finitely generated k-algebras without nilpotents (Note that this has a
name: it is the functor represented by k1).

More abstractly, an affine variety is a pair (X,R) where R ⊂ Functions(X → k) with R finitely generated
and X in natural bijective correspondence with maximal ideals of R (i.e. such that if x ↔ m, then f(x) =
f mod m ∈ R/m ∼= k).

To realize (X,R) as an algebraic sset, choose generators h1, . . . , hm ∈ R; relations beteen hi’s form an
ideal J ⊂ k[x1, . . . , xn]. Then we have a surjective k-algebra homomorphism k[x1, . . . , xn] → R, which
factors to give an isomorphism of k[x1, . . . , xn]/J ∼= R. Then X ∼= V (J) ⊂ kn.

Example. R = k[t]. Using the single generator x = t, then X = k1 with coordinaes t.
Take non-efficient generator set x = t, y = t2. Then Y = V (y − x2) ⊂ k2 (

〈
y − x2

〉
is the ideal of

relations). This shows that the line is the same as the parabola.
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Remark (Notation.). Specm(R) is the set of maximal ideals in R (R finitely generated with no nilpotents).
We actually consider Specm(R) as an affine variety in the obvious way.

Traditionally, An = (kn considered as an affine variety) = Specm(k[x1, . . . , xn]). Philosphically, it is more
important that An is a ring of polynomials, it is usually not as important what the underlying field is, which
is why often one does not write Ank .

Why is the definition of an affine variety as (X,R) we gave makeshift? It presumes that geometry is
space=set and a class of functions). But often you do not have global functions on a space, e.g. P1 (Riemann
sphere) has no global holomorphic functions that are not constant.

So a better definition would be space=(topological space and locally defined class of functions). The good
abstraction of locally defined class of functions is a isheaf of functions. It is worthwhile to look this up as
we will eventually go over it and use it, but quickly.

4.2. Zariski topologoy on algebraic set. Note: most of what we do will holds for affine varieties (but
we need this to properly define the notions of locally defined function).

Definition. The Zariski topology on an algebraic set X is the topology whose clased subsets are algebraic
subsets Y ⊂ X,i.e. sets cut out by radical ideals of the coordinate ring k[X].

Exercise. A regular map between algebraic sets is continuous in the Zariski topology. A biregular map, for
example, will be a homeomorphism.

The key property of a coordinate ring is that k[X] are Noetherian, so ideals in k[X] satisfy the ascending
chain condition. Hence, closed subsets in the Zariski topology satisfy the descending chain condition.

Definition. A topological space is noetherian if closed subsets satisfy the descending chain condition, i.e.
any (X0 ⊃ X1 ⊃ . . . stabilizers), i.e. if open subsets satisfy the ascending chain condition.

Proposition. Any algebraic set is Noetherian in the Zariski topology.

Proof. Clear. �

Example. On A1, any descending chain of finite sets stabilizes.
In the classical topology, Rn is not noetherian unless n = 0.

Remark (Fact.). A space X is Noetherian and Hausdorff only if X is finite.

Lemma. Any Noetherian topological space is quasi-compact (compact without Hausdorff), i.e. any open
cover has a finite subcover.

Proof. If X =
⋃
Uα, take Uα1

⊂ (Uα1
∪ Uα2

) ⊂ . . . . This chain of open sets stabilizes. �

Corollary. Any algebraic set is quasi-compact in Zariski topology.

Second proof of Lemma. X =
⋃
Uα, then UαX − V (Jα), and ∅ =

⋂
α V (Jα) = V (

∑
Jα) if and only if

1 ∈
∑
α Jα, but then 1 belongs to some finite sum of ideals Jα. �

The second proof does not use Hilbert’s basis theorem, i.e. does not use the Noetherian condition on the
ring. Hence this can be extended to affine schemes whereas the first proof cannot.

Definition. A principal open set of X is a set of the form D(f) = X − V (f) = {x ∈ X : f(x) 6= 0} for
f ∈ k[X].

Lemma. The principal open sets form a basis of the Zariski topology.

Proof. This is a purely formal statement since:

(1) X−V (J) =
⋃
f∈J D(f) (can take finite unions if using Hilbert’s Basis theorem and have Noetherian

condition).
(2) Intersections are an easy exercise. �

Remark.
f

g
will be defined on D(g), where f, g ∈ k[x] is perhaps one reason to care for open sets.



NOTES FOR MATH 763: INTRODUCTION TO ALGEBRAIC GEOMETRY FALL 2012 7

Definition. A topological space X is said to be irreducible if X 6= ∅ and whenever X = X1 ∪X2 for closed
X1, X2, then either X1 or X2 = X. (if this union is disjoint, then this becomes the definition of a connected
space).

Remark. X 6= ∅ is irreducible if and only if any two non-empty open subsets interect, if and only if every
non-empty open set is dense. If X is non-empty and Hausdorff, then X has to be a single point.

Example. X = A1 is irreducible.
V (xy) ⊂ A2 is the union of V (x) and V (y), hence is reducible. The picture is the union of the coordinate

axes.
Also X = An is irreducible by the theorem that follows.

Theorem. An algebraic set X is irreducible if and only if k[X] has no zero-divisors, i.e. is a domain.

Proof. X is irreducible if and only if any two non-empty open subsets intersect. Hence, it is enough to check
this property for two principal open sets D(f) and D(g) where f, g ∈ k[X]. But D(f) ∩D(g) = D(fg), and
D(f) = ∅ if and only if f = 0, so we are done. �

Remark (Reformulation). If X ⊂ An (or X ⊂ Y ), then X is irreducible if and only if I(X) ⊂ k[x1, . . . , xn]
(or ⊂ k[Y ]) is prime.

Hence, for algebraic sets Y , by Nullstellensatz we had {closed subsets of Y } corresponding to {radical
ideals J ⊂ k[Y ]}. Points corresponded to maximal ideals, and now irreducible closed subsets correspond to
prime ideals.

Theorem. Any noetherian topological space X can be written as a finite union of closed irreducible sets
X = X1 ∪ · · · ∪Xm. Moreover, this is unique up to order if it is irredundant, i.e. Xi 6⊆ Xj for i 6= j.

Proof of existence. Suppose not. Then X is reducible, so X − X + 1 ∪ X2 ( X closed. Either X1 or X2

cannot be written as a finite union of irreducible sets, say X1. Then X ) X1 are two sets for which the
statement of the theorem fails, giving us an infinite descending chain of closed subsets, which contradicts
the noetherian property. �

Exercise. Show uniqueness.

5. September 18

5.1. Decompositions into irreducibles. Last time we have that a topological space is noetherian if the
closed sets satisfy the descending chain condition, i.e. open sets satisfy the ascending chain condition. We
also said that a topological space is irreducible if it is non-empty and not a union of proper closed subsets.

Theorem. Given X =noetherian, there exist finitely many irreducible closed subsets Xi, i = 1, . . . ,m such
that X =

⋃m
i=1 xi and Xi 6⊆ Xj for i 6= j. Furthermore, these Xi are unique up to order and they are called

the irreducible components of X.

Remark. The irreducible components of X are precisely the maximal closed irreducible subsets of X.

Corollary. A noetherian Hausdorff space is finite.

Proof. The irreducible components are not only irreducible, but also Hausdorff, hence are singletons. �

We have the following:

Proposition. Given X =affine variety with Zariski topology.
Then X is noetheiran (and therefore quasi-compact), and X is irreducible if and only if k[X] is integral.

Furthermore, irreducible components of X are in bijective correspondence with the minimal prime ideals in
k[X].

Remark (Algebraic version of the theorem: “weak primary decomposition”). In k[X], finitely generated
k-algebra, a radical ideal is the intersection of finitely many prime ideals (+uniqueness). This is weaker than
Noether-Lasker theorem on primary decomposition.
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Example. An is irreducible. Given a hypersurface (hypersurface=zero-locus of a single non-zero (non-
nilpotent if nilpotents were present?), non-unit function) V (f) ⊆ An, we can take f to be square-free, so 〈f〉
is radical.

Then V (〈f〉) is irreducible if and only if f is irreducible. If f = f1 . . . fk is the product of irreducibles, we
obtain a decomposition into irreducibles V (f) = V (f1) ∪ V (f2) ∪ · · · ∪ V (fk). This is true for hypersurfaces
of any variety whose coordinate ring is a unique factorization domain.

Example. Closed irreducible subsets of A1 are A1 and singletons=“irreducible hypersurface” in A1.
Closed irreducible subsets of A2 are three types:

(1) A2 itself;
(2) irreducible plane curves V (f) where f ∈ k[x, y] is irreducible;
(3) singletons.

To explain and do well this classification, we need the notion of dimension, which we will discuss system-
atically later on. It is not hard to prove by brute force, however (at least the plane case).

Note: we are currently developing the foundational material needed to articulate and prove actual deep
theorems, such as the Riemann-Roch theorem for algebraic curves.

5.2. Regular functions on open subsets of (affine variety) X.

Remark (Idea). If we have two reuglar functions, f, g ∈ k[X], we can define
f

g
: D(g)→ k. We want to say

that
f

g
is regular on D(g).

Example. Consider the circle X = V (x2+y2−1) ⊂ A2, which we can “parametrize” by A1 by (x, y)→ y

x+ 1

and (
1− u2

1 + u2
,

2u

1 + u2
) ← u (note: this fails in characteristic 2, because X = V (x2 + y2 − 1) is reducible in

characteristic 2).

Now,
y

x+ 1
is regular on X−{(−1, 0)} while (

1− u2

1 + u2
,

2u

1 + u2
) is regular on A1−{±i} where i =

√
−1. We

want to say that these two open sets are isomorphic, i.e. that the maps restrict to bi-regular maps between
the open sets. But what are regular functions on open sets?

(note that we puncture the line, but not at a real point, so real pictures lie!)

Definition. Suppose f : D → k is a function on a subset D ⊂ X. We say that f is regular at x ∈ X if there

is an open subset U ⊂ X, U ⊂ D, x ∈ U and f |U =
g

h
|U for g, h ∈ k[X], with h having no zeroes on U .

We further say that f is regular on an open set D ⊂ X if it is regular at all points of D. (Note: it is not
obvious that this definition of regular matches the previous definition of regular we had)

Remark.

(1) The condition of f being regular on D ⊂ X is a local property. There does not necessarily exist

g, h ∈ k[X] such that f |D =
g

h
|D. For example, if X = V (y2− x3), then

y + 1

x− 1
represents a function

regular on X−{(1, 1), (1,−1)}. However,
y + 1

x− 1
=

(y − 1)(y + 1)

(y − 1)(x− 1)
=

y2 − 1

y − 1)(x− 1)
=
x3 − 1

y − 1
x− 1 =

x2 + x+ 1

y − 1
. The latter is regular away from y = −1, so the two define a regular function on X,

which does not have a global representation.
The problem for the existence of global reprsentation is not singularity of the curve, but lack of

unique factorization in k[X].
(2) In our definition of regular at a point, we may assume that U = D(φ), where φ is a regular function

on k[X], with φ(x) 6= 0.

In fact, we can replace
g

h
by

gφ

hφ
, which gives the following definition: f is regular at x if there

are g, h ∈ k[X] such that h|X−D = 0, h(x) 6= 0, (so x ∈ D(h)) and
g

h
= f on D(h).
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Theorem. A function f : X → k that is regular at all points of X lies in k[X].

Proof. The proof is easy, but uses a neat trick.

Our assumption is that for every x ∈ X, there is D(h) 3 x such that f =
g

h
on D(h) (where g, h depend

on x). We get an open cover of X, and since X is quasi-compact, there exist a finite collection {(gi, hi)},
i = 1, . . . ,m such that X =

⋃m
i=1D(hi) and f =

gi
hi

on D(hi). Then hif = gi on D(hi). We can assume

that in fact hi = fgi on all of X since the identity fails only on the complement of D(hi), so we can replace
gi
hi

with
gihi
h2i

.

Hence, since X =
⋃m
i=1D(hi) is the same as saying that

⋂m
i=1 V (hi) = ∅, so V (h1, . . . , hm) = ∅ and hence

〈h1, . . . , hm〉 = R, i.e. 1 =
∑m
i=1 φihi for some φi ∈ k[X].

But now f = f · 1 = f(
∑m
i=1 φihi =

∑m
i=1 φihifi =

∑m
i=1 φigi ∈ k[X]. �

Remark. The key point in the proof is writing 1 as the sum of terms non-trivial on only finitely many open
sets in a cover, i.e. we have an “algebraic partition of unity”.

Theorem (Algebraic version of theorem). Let R be a commutative ring (with 1). Given h1, . . . , hm ∈ R
with 〈h1, . . . , hm〉 = R = 〈1〉 and elements ψi ∈ Rhi (localization of R at {hni : n ≥ 0}), i = 1, . . . ,m. We

can assume that ψi =
gi
hrii

.

Since we cannot talk about a function f , we can talk about
gi
hi

=
gj
hj

agreeing on D(hi)∩D(hj). Concretely,

we can require that ψi = ψj as elements of Rhihj .
Then there exists a unique Ψ ∈ R such that Ψ = ψi in Rhi for all i = 1, . . . ,m.

Proof. This is trickier because of possible nilpotents, and the strange notion of equality in localizations.

We can write ψi =
gi
hrii

; we can replace hi with ri (note: 〈1〉 = 〈hr11 , h
r2
2 , . . . , h

rm
m 〉. Then ψi =

gi
hi

.

Then ψi = ψj means that
gi
hi

=
gj
hj

, which means precisely (hihj)
kij (gihj − gjhi) = 0. We can assume

kij = 0 after gi → gih
N
i and hi = hih

N
i for N >> 0.

Then gihj − gjhi = 0 and we can write 1 =
∑
φihi. Setting Ψ =

∑
φigi, then Ψ =

gi
hi

since Ψhi =

hi
∑
j φjgj =

∑
j φj(gihi) = gi1 = gi. �

6. September 20

Last time: X =affine variety, and we said that f : U → k for a (Zariski) open U ⊂ X is regular if f is

locally of the form
g

h
, g, h ∈ k[X]. Our main fact from last time is that this definition is consistent in the

sense that a function is regular on all of X if and only if f ∈ k[X]. We also had an algebraic version of this
theorem.

6.1. Subvarieties.

Definition. A subvariety X of An is a subset that is open ins some aglebraic set Y (equivalently: X is open
in X̄, i.e. is locally closed (the intersection of an open and closed subset).

If X1, X2 ⊂ An are both locally closed and X1 ⊂ X2, i.e. X1 is locally closed in X2, we say that X1 is a
subvariety of X2.

We have defined what it means for a function f : X → k (where X ⊂ An is a subvariety) to be regular
(e.g. X is an open subset of some aglebraic set Y , and this does not actually depend on the choice of Y [I

think this is almost obvious: if f =
g

h
, for g, h ∈ k[X̄], then it equals

g

h
for g, h ∈ An and hence in k[Y ] for

any Y containing X).

Definition. A map X1 → X2 between subvarieties X1 ⊂ An, X2 ⊂ Am is regular if its components are
regular functions.
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This extends our main category {locally closed subsets, regular maps} ⊃ {closed subsets, regular maps}.
The latter is a full subcategory of the former (there are no extra morphisms between closed subsets when
we pass to locally closed subsets).

Example. (x, y)→ y

x+ 1
is regular onX−{1, 0} whereX = V (x2+y2−1), while the inverse

(
1− u2

1 + u2
,

2u

1 + u2

)
←

u is regular on A1 − {±1}. So the two subvarieties are isomorphic.

Example. Consider the cuspidal cubic X = V (y2 − x3). The homework gave a map t → (t2, t3) from

A1 → X, which is not a regular map. The inverse map is actually
y

x
← (x, y), which is not regular. But we

can embrase this situation, and see that it is regular on X − {0}. So now we actually have an isomorphism
A1 − {0} ∼= X − {(0, 0)}.

The following example is the simplest, and hence probably the most important.

Example. Consider Y = V (xy−1), the usual hyperbola. We have a map Y → A1 sending (x, y)→ x which

is obviously regular. Solving for y, we get (x,
1

x
) ← x which is defined on A1{0}, so that the hyperbola is

isomorphic to A1 − {0}.
This is important because A1 −{0} is now abstractly isomorphic to an affine variety (i.e. in the category

of locally closed subsets it is isomorphic to a closed set)!

Proposition. Suppose X is an affine variety, and f ∈ k[X]. We can define Y ⊂ X×A1 = {(x, y) : y ·f(x) =
1}. This Y is certainly an affine variety (by the homework X × A1 is affine, Y ⊂ X × A1 is closd, so affine

as well). Then Y ∼= D(f) ⊂ X, which in one way is (x, y)→ x and the other way is (x,
1

f
)← x.

(Rabinowitch’s trick is saying that f vanishing on X means D(f) is empty, so Y is empty).
Furthermore, and most impotantly, the principal open set D(f) is an affine variety, because D(f) ∼= Y in

the category of locally closed sets whose morphisms are regular functions.

So we should have k[D(f)] ∼= k[Y ], but what is k[D(f)]? Well, k[X × A1] = k[X][y], so k[Y ] =
k[X][y]/〈yf−1〉. This is cheating a bit since we must check that 〈yf − 1〉 is radical, but this construction is
just localization! So k[X][y]/〈yf−1〉 = k[X]f .

Corollary. Regular functions D(f)→ k are of the form
g

fr
where g ∈ k[x], r ≥ 0.

Exercise. If D(f) = D(f̃), then k[X]f = k[X]f̃ .

To summarize: another reason to love principal open sets is that they are secretely affine. But they also
form a basis for the Zariski topology! (strange remark: affine sets are analgous to contractible sets that we
usually like to use to give bases for topologies). Hence, any open subset U ⊂ X (X can be affine or locally
closed, or anything really) for can be covered by affine open sets (the principal opens!).

6.2. An aside. Suppose R is a commutative ring, the h1, . . . , hm ∈ R generate 〈1〉, i.e. 1 ∈ 〈h1, . . . , hm〉,
and ψi ⊂ Rhi (i = 1, . . . ,m) such that ψi = ψj in Rhihj , then there exists a unique Ψ ∈ R such that Ψ = ψi
in Rhi .

So if R = k[X], then this is a “gluing statement” for regular functions with respect to the cover X =⋃m
i=1D(hi). This is another point of view: before this showed us regular functions as fractions of global

functions were well-defined; now we can think that forcing regular functions to be the localizations on
principal opens generates exactly the same thing.

More importantly, the “gluing statement” is the axioms of a sheaf.
Another way of phrasing this is that the sequence 0 → R →

∏
iRhi →

∏
i<j Rhihj with maps f →

(f1, f2, . . . , fm) and (f1, . . . , fm)→ (fi − fj)i<j is exact.
There is actually a longer sequence 0→ R→

∏
iRhi →

∏
i<j Rhihj →

∏
i<j<k Rhihjhk → . . . (which is a

finite sequence; the new maps give alternating signs). Fact: this sequence is exact.
Geometrically: if R = k[X], this sequence computes the Čech cohomology of X with coefficeints in

regular functions with respect to X =
⋃n
i=1D(h)i). This is why we shouldn’t laugh when saying that D(f)

are contractible!
Fact: Affine varieties have no higher cohomology with coefficients in regular functions.
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6.3. Varieties. The idea is the following: abstract algebraic vareites are defined by “gluing” affine charts.
Two interpretations: actually glue charts, or just a topological space with a sheaf of ringed functions.

Note that we actually did something today: we made a non-trivial extension by moving to subvarieties.

Remark. Not every localy closed set is affine.

Exercise. For example, A2−{(x, y)}. One can prove (Homework#2) that any regular function is a restriction
from A2. Then A2 − {(x, y)} has a maximal ideal that does not correspond to a point in A2 − {(x, y)}.

7. September 25

Last time we talked about the category of locally closed sets, and showed that D(f) ⊂ X for a variety X
is affine, i.e. k[D(f)] = k[X]f is an affine variety. Thus every open subset of X can is covered by affine open
sets. Our goal is to extend these notions so that we can talk about open subsets as geomeric objects.

7.1. (Abstract) algebraic varieties.

Definition (Classical: with charts). A vaiety X is a topological space together with an open cover X =⋃
α Uα and homeomorphisms θαUα ∼= Yα ⊂ Anα where Yα are algebraic sets (closed in Zariski topology) such

that:

(0) The transition functions θβ ◦ θ−1α are regular.
(1) X is quasi-compact
(2) X is separated (to be given later, analagous to Hausdorff property)

A pre-variety is a topological space satisfying only the first two properties. It is easier to develop the theory
for pre-varieties first, and then state separatedness in that language.

Example. Any locally closed subset X of An is a pre-variety (in fact a variety once we know what separt-
edness is). This is because X is an open subset of an affine (algebraic) Y ⊂ An, hence is covered by principal
open sets of Y .

More concrete example: A2 − {(0, 0)}. It is covered by U1 = A2 − V (x) and U2 = A2 − V (y). We did
the isomorphisms last time: U1 = A1 − V (x) ∼= V (ux − 1) ⊂ A3 and U2

∼= V (vy − 1) ⊂ A3. The transition
function is (x, y, u)→ (x, y, 1y ) which is regular on Y1 − V (y) ∼= Y2 − V (x).

Definition. A morphism of pre-varieties φ : X → X ′ is a continuous map that is regular on charts: i.e.
θ′β ◦ φ ◦ θ−1α is regular on its natural domain.

This classical definition is nice for computations, but is not very canonical as it depends on the choice of
charts.

7.2. Ringed spaces.

Definition (More abstract). A pre-variety is a quasi-compact topological space X together with a sheaf of
k-algebras (“sheaf of regular functions”) that is locally isomorphic to an affine variety.

Since we will be working with varieties, rather than schemes, we will use a more concrete version of this
definition (i.e. one in which it is obvious that k-algebras are actually algebras of functions).

Definition. A sheaf of functions OX on X assigns to any open U ⊂ X a k-algebra OX(U) ⊂ {functions
U → k} such that whenever U =

⋃
α Uα, we have f ∈ OX(U) if and only if f |Uα ∈ OX(Uα) for all α.

Remark (Exercise). If V ⊂ U , and f ∈ OX(U), then F |V ∈ OX(V ). (proof: U = U ∪ V )

Remark (Terminology). OX =structure sheaf ofX (or of (X,OX)) and f ∈ OX(U) we call regular functions.

Example. WhenX =topological/differentiable/analytic manifold, thenOX(U)=continuous/differenitable/analytic
functions U → k (k = R or C).

If X ⊂ An is an algebraic set or locally closed subset, then OX(U) =regular functions U → k

We want to study pairs (X,OX) where OX is a sheaf of functions. This unfortunately has no name, as
“ringed space” refers to the general pair (X,OX) where OX is a sheaf of rings whose elements (sections) are
not necessarily functions.
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Definition. A morphism of ringed spaces (X,OX)→ (Y,OY ) is a continuous map Φ: X → Y of topological
spaces such that for any V ⊂ Y , and any f ∈ OY (V ), the composition f ◦Φ ∈ OX(Φ−1) (in varieties, this is
precisely requiring that not only components are regular, but that all pullbacks (not just of particular choice
of generators) is regular).

Exercise. This gives the usual class of morphisms for topological/differentiable/abalytic manifolds and for
locally closed subsets of An.

Example. Given (X,OX) and open U ⊂ X, define OU by OU (V ) = OX(V ) since V ⊂ U ⊂ X are inclusions
of open sets. Then (U,OU ) is an open subspace of (X,OX), and φ : U → X is a morphism of ringed spaces
(it is common to elide the sheaf like that).

7.3. Pre-varieties, again.

Definition. A pre-variety is a quasi-compact ringed space (X,OX) that is locally isomorphic to an algebraic
subset in some An, i.e. there is a cover X =

⋃
Uα such that (Uα,OUα) ∼=algebraic subset in Anα with its

natural sheaf of regular functions.

This differs from the previous definition in that the role of the “charts” is not to (locally) equip X with
the structure of varieties, but to identify the structure given by the sheaf on X as (locally) the structure of
an algebraic variety.

Example. Any locally closed subset of An equipped with its natural sheaf of regular functions becomes a
pre-variety.

Remark (Terminology). An affine variety is a pre-variety that is isomorphic to a Zariski-closed subset of
some An. A quasi-affine variety is a pre-variety that is isomorphic to a locally closed subset of some An.

Pre-varieties

��

Varieties

yy

**

projective varieites, subsets of Pn

��rr

quasi-affine varieties, subsets of An

��

projective varieties

affine varieties

Definition. A pre-variety X is separated (and then a variety) if for any pre-variety Y and any regular maps
f, g : Y → X, the set {y : f(y) = g(y)} is closed in Y .

It is enough to check just affine Y ’s.

Example. (1) If X = A1, and Y =affine, then V (f − g) is the equalizer set.
(2) If X = An is a variety, then V (f1 − g1, f2 − g2, . . . , fn − gn) is the equalizer set of f, g : Y → An

relying on the fact that they are given as component regular functions.
(3) This works for any locally closed X ⊂ An, so all quasi-affine varieties are indeed varieties.

Example (Non-separated). Consider A1−{0} ⊂ Y1 = A1 and A1−{0} ⊂ Y2 = A1 glued on A1−{0}. This
is known as A1 with a doubled point.

Then A1 ∼= Y 1 ↪→ X and A1 ∼= Y2 ↪→ Y ...
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8. September 27

Last time we defined a pre-variety X to be a quasi-compact topological space X with an open cover
X =

⋃
α Uα with θα : Yα ∼= Yα where Yα is an algebraic set, with a condition that the transition maps are

biregular.
Another definition we gave was that X is a quasi-compact topological space X with a sheaf of functions

OX that is locally isomorphic to algebraic subsets with their sheaf of regular functions.

Exercise. The two definitions are equivalent.

8.1. Sub(pre-)varieties. Let (X,OX) be a ringed space, Y ⊂ X a subset with induced topology. Equip Y
with the following OY : For any open V ⊂ Y , f : V → k is regular (so f ∈ OY (V )) if it locally extends to a

regular function on X, i.e. if any y ∈ V has a neighborhood U ⊂ X containing y and there is f̃ ∈ OX(U)

such that f̃ |U∩V = f |U∩V .
It is clear that so-defined OY is a sheaf of functions on Y . This is the smallest sheaf such that Y ↪→ X is

regular (morphism of ringed spaces).

Proposition. If X is a pre-variety and Y ⊂ X is locally closed, then Y is a pre-variety.

Idea of proof. Reduce to a closed subset X ⊂ An, then check that we get the usual structure sheaf on locally
closed Y ⊂ X ⊂ An. �

Definition. In the above situation (Y is locally closed in X), we say that Y is a sub-pre-variety of X. If Y
is actually open/closed, we say that Y is an open/closed sub-pre-variety of X.

Example (of using the terminology). We can reword the definitions of affine variety and quasi-affine variety
as follows.

An affine variety is a pre-variety isomorphic to a closed subvariety of An (admits a closed embedding into
An).

Also a quasi-affine variety is a pre-variety isomorphic to a locally closed subvariety of An.

8.2. Product of pre-varieties.

Remark. If X ⊂ An and X ′ ⊂ An′ are algebraic, then X ×X ′ ⊂ An+n′ is algebraic.

Definition (Really a construction). Suppose we are given two pre-varieties X and X ′, consider affine charts
X =

⋃
α Uα and X ′ =

⋃
β U
′
β with homeomorphisms θα : Uα ∼= Yα and θ′β : U ′β

∼= Y ′β .

We construct their product X × X ′ as X × X ′ =
⋃

(α,β) Uα × U ′β with θ : Uα × U ′β ∼= Yα × Y ′β given by

θ = θα × θ′β .

Exercise. X ×X ′ is a pre-variety.

Remark (Warning). The topology on X ×X ′ is not the product topology. For example, in A2 = A1 ×A1,
the product topology is the product of co-finite topologies, so the base for the product topology is the union
of complemenets of horizontal and vertical lines.

So to get the topology on X ×X ′, just give the charts the topology for which Uα×U ′β are homeomorphic

to Yα × Y ′β , i.e. define U ⊂ X ×X ′ to be open if θα × θ′β(U ∩ (Uα × U ′β)) ⊂ Yα × Y ′β is open in the Zariski
topology.

Proposition. For pre-varietes Y,X,X ′ a map φ : Y → X ×X ′ is given as (ψ,ψ′) is a morphism (regular)
if and only if both of the components ψ and ψ′ are morphisms (regular).

Proof. Clear. �

Corollary. X × X ′ is the categorical product in the category of pre-varieties, so is unique up to unique
isomorphism. In particular, our construction of X ×X ′ is independent of the choice of charts.

(This is true because our category of pre-varieties over an algebraically closed field has their regular maps
determined set-theoretically on points)

Exercise. If Y ⊂ X and Y ′ ⊂ X ′ are sub-pre-varieties, then Y × Y ′ ⊂ X ×X ′ is a sub-pre-variety.
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8.3. Seperatedness revisited. Recall that given a fixed X, for any pre-variety Y and any morphisms
f, g : Y → X, we require that {y : f(y) = g(y)} is closed in Y .

Consider φ = (f, g) : Y → X×X. Then this set is φ−1(∆) which we require to be closed where ∆ ⊂ X×X
is the diagonal. This being true for the identity map requires that ∆ must be closed, and ∆ is closed implies
φ−1(∆) is closed since φ is continuous. Thus we have proved that:

Proposition (Reformulation). A pre-variety X is separated if and only if ∆ ⊂ X ×X is diagonal.

Remark. ∆ is always locally closed. So we require that X ↪→ X ×X is not just an embedding but a closed
embedding.

Recall that a topological space X is Hausdorff if and only if ∆ ⊂ X ×X is closed with X ×X having the
product topology.

So “separated”=“Hausdorff” using Zariski topology on X ×X.

Exercise.

(1) The product of varieties is a variety.
(2) Sub-pre-variety of a variety is a variety.

(E.g. An is separated implies anything quasi-affine is separated).

8.4. Rational functions and rational maps. Suppose X is an irreducible variety. What is good about
this is that any two non-empty open sets intersect, so we can compare regular functions on different open
sets: if U → k and U ′ → k, we can compare them even if U 6= U ′!

Example. In X = A1, we can compare f1 =
g1
h1

and f2 =
f2
g2

, but on X = Z(xy) we cannot compare
1

x

and
1

y
.

Proposition. Note that if f : U → k and f ′ : U ′ → k, for open U,U ′ ⊂ X) coincide on some non-empty
open set V ⊂ U ∩ U ′ f |U∩U ′ = f ′|U∩U ′

Proof. Since U ∩U ′ is irreducible (if U ∩U ′ = Y ∪ Y ′ where each of Y and Y ′ is closed, then X = Ȳ ∪ Y ′ ⊆
(̄Y ∪ Y ′)) Once we know f = f ′ on V , it also holds on V̄ = U ∩ U ′ (since the variety is separated, the
equalizer set is closed). �

Same argument as above shows that given f, U, U ′, there is at most one f ′ : U ′ → k such that f |U∩U ′ =
f ′|U∩U ′ (at most one way to extend f to U ∪ U ′) (f ′ − g′|U∩U ′ = 0 implies f ′ − g is 0 on U ′).

Definition. Consider the sets {(U, f) : U ⊂ X open, U 6= ∅, f : U → k is regular}.
Then define a relation by (U, f) (U ′, f ′) if f |U∩U ′ = f ′|U∩U ′ . This is an equivalence relation by the

previous proposition. We define a rational function on X to be an equivalence class of this relation.

9. October 2

Last time we looked at two important constructions. First: a locally closed subset of a (pre-)variety is
naturally a (pre-)variety. Second: the product of (pre-)varieties is naturally a (pre-)variety. Note that the
Zariski topology of the product has more open sets than the product topology.

9.1. Rational functions.

Definition. A rational function on an irreducible variety X is an equivalence class of pairs (U, f) where
U ⊂ X is a non-empty open subset, and f : U → k is a regular function, with (U, f) (U ′, f ′) if f |U∩U ′ =
f ′|U∩U ′ .

It is easy to see that rational functions form a k-algebra, and in fact a field (inverse of f is defined not
necessarily on the domain of f , but on a potentially smaller open subset). We denote it k(X).

Proposition.

(1) k(X) = k(U) for any open non-empty U ⊂ X.
(2) if X is affine, then k(X) is the field of fractions of k[X] (since X is irreducible, the latter is a domain).
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In particular: k(X) ⊃ k(X) is always a finitely generated field extension of k. Conversely, any finitely
generated extension of k is k(X) for some irreducible variety X. Specifically, if k ⊂ k[x1, . . . , xn], consider
k[x1, . . . , xn] ⊂ k(x1, . . . , xn), so X = Specmk[x1, . . . , xn].

Remark. For any f ∈ k(X), there is a unique maximal open set U such that f is regular on U , i.e. such
that (U, f) is maximal in the equivalence class. We call U the domain of regularity of f .

Remark (Homework). Ox =“local ring of x in X” is the stalk of OX of x ∈ X. For an irreducible variety

the definition can be made simpler: k(X) ⊃ Ox = {f ∈ k(x) : f is regular at x}. If X is affine, then
g

h
,

g, h ∈ k[X], h(x) 6=, i.e. h 6∈ mx where mx ⊂ k[X] is the maximal ideal of the point x. So Ox = k[X]mx (the
localization of the ring k[X] at the maximal (prime) ideal mx).

Thus we can tautologically restate the domain of regularity of f ∈ k(X) as {x : f ∈ Ox ⊂ k(X)} (for all
irreducible varieties X).

Example. If X =affine, then the Nullstellensatz says that
⋂
x∈X Ox = k[X].

9.2. Rational maps.

Definition. Suppose that X and Y are irreducible varieties (we really just need X irreducible pre-variety
and Y separated).

A rational map f : X → Y is an equivalence class of pairs (U, f) where U ⊂ X is non-empty open subset,
where f : U → Y is a regular map, and (U, f) (U ′, f ′) if f |U∩U ′ = f ′|U∩U ′ (the equivalence relation uses only
that X is irreducible and Y is separated).

If we want to compose, we have a problem: X

f
rational−→ Y

g
rational−→ Z, then g ◦ f might not be defined as a

rational map because f might avoid the domain of regularity of g.

Definition. A rational map (f, U) X
rational−→ Y is dominant if f(U) is desnse in Y .

Exercise. The above is independent of U .

If f : X
rational−→ Y is dominant and g : Y

rational−→ Z is rational, then g ◦ f : X
rational−→ Z makes sense. In

particular, if g ∈ k(Y ), then g ◦ f ∈ k(X), so we obtain f∗ : k(Y ) ↪→ k(X).
(of course, the non-dominant rational maps are actually constants)

Remark. Suppose that f : X
rational−→ Y . We can actually assume that we have f : U → V a regular map

from an affine open of X to an affine open of V . Then we have k[U ]
f∗← k[V ]. When is f dominant, i.e.

when is ¯f(U) = V ? Well, U ⊂ U is a closed set given by the (0) ideal of k[U ]. Hence, ¯f(U) is given by
(f∗)−1(〈0〉) ⊂ k[V ]. We require that (f∗)−1(〈0〉) = 〈0〉, so f∗ has to be injective.

So if this is the case, we certainly have an induced map f∗ : k(V ) ↪→ k(U), as expected.

Proposition. Conversely, any embedding Φ: k[Y ] → k[X] equals f∗ for unique dominiant rational map

f : X
rational−→ Y .

Proof. Without loss of generality, we may assume X and Y are affine: k[Y ] = k[y1, . . . , yn] where yi’s are
coordinates on Y ⊂ An. Then yi ∈ k(Y ).

Look at Φ(yi) ∈ k(X). Shrinking X we may assume that Φ(yi) ∈ k[X]. Then Φ: k(Y ) → k(X) extends
to k[Y ]→ k[X]. Hence Φ(k[Y ]) ⊂ k[X]. Then Φ comes from a regular f : X → Y , necessarily dominant. �

Remark (Summary). The category of irreducible varieties with rational dominant maps is anti-equivalent
to the category of finitely generated field extensions of k.

Remark (Terminology). The isomorphisms in this category are called birational maps.

9.3. Examples.

Example. Consider X = V (x2 + y2 − 1) ⊂ A2 and Y = A1. Then we have X

u=
y

x+ 1
rational−→ Y is a birational

map, so k(X) = k(x)[y]/〈x2+y2−1〉 ∼= k(u).
Hence the unit circle is rational (birational to the line).
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Example. Consider X = V (
〈
x3 − y2

〉
). Then (u2, u3)← u that maps X ← A1 is regular and birational as

(x, y)
rational−→ y

x
. So the cuspidal cubic is rational.

Example. If U ⊂ X is non-empty open, then U ↪→ X is bi-rational (that’s why k(X) = k(U)) (of course
that’s circular).

Proposition. X and Y are birational if and only if there are non-empty open subsets U of X and V of U
such that U ∼= V .

Proof. Well, for one direction X is birationally isomorphic to U , which is isomorphic to V , which is bira-
tionally isomorphic to Y , so X and Y are birationally isomorphic.

Suppose that f : X
rational−→ Y and g : Y

rational−→ X are inverses.
Note that f must be regular on some U ⊂ X and g on some V ⊂ Y , so g◦f must be regular on f 1(V )∩U ,

so g ◦ f = id on that open set, so the image of the composition actually lands in U ∩ f−1(V ) and f lands in
V ∩ g−1(U).

Therefore, f(U ∩ f 1(V )) ⊂ V ∩ g−1(U). Moreover it is in V ∩ g−1(U ∩ f−1(V )) so we have maps to and
from U ∩ f 1(V ).

�

10. October 4

Last time: we have a rational map f
rational−→ X → Y is a regular map from non-empty open U → Y . It is

dominant if f(U) ⊂ Y is dense.
Thus we obtain an anti-equivalence between {irreducible varieties with dominant rational maps}and{finitely

generated field extensions K ⊃ k}.

Example. Start with X an irreducible variety. Suppose its field of ratonal functions is K ⊃ k, which is of
course a finitely generated field extenision. Choose x1, . . . , xn ∈ K that are algebraically independent/k (over
k) such that K ⊃ k[x1, . . . , xn] is a finite extension (i.e. we chose a transendence basis) so n = tr deg(K/k)
(transendence degree of the field extension).

So we have the primitive element theorem when K is separable, so K = k(x1, . . . , xn)[y]. This is not a
problem if chark is 0, but there is no reason for the extension to be separable when characteristic is non-zero.
However: by choosing carefully the generators, we can ensure the extension is separable.

So now, we can let f ∈ k(x1, . . . , xn)[t] be the minimal polynomial of y/k(x1, . . . , xn) (/ means over in
this context). But we can actually choose f ∈ k[x1, . . . , xn, t] which will then be irreducible, so K ∼= k(X)
where X = V (f) ⊂ An+1.

Corollary. Any irreducible variety is birationally isomorphic to a hypersurface.

Proof that we can choose correct transcendental basis above. Let K = k(z1, . . . , zn). Assume zi’s are not
independent: then there is f ∈ k[t1, . . . , tn] such that f(z1, . . . , zn) = 0. We can assume f is irreducible, so
f 6∈ (k[t0, . . . , tn])p = k[tp1, . . . , t

p
m] where p is the characteristic k (because k is perfect). So this means that

f has a monomial tm which appears in f not as tpm, so then zm is separable over k(z1, . . . , zm−1). �

10.1. Dimension.

Definition. If X is irredubcle, we define the dimension of X to be dimX =transcendence degree k[X].
If X =

⋃
iXi with the Xi =irreducible components, then we define the dimension of X to be the largest

of the dimensions of the components: dimX = maxi dimXi.
If all components have the same dimension, we say that X has pure dimension.
For x ∈ X, we say dimxX = maxx∈Xi dimXi where Xi are irreducible components.

Proposition. • If irreducible X and Y are rationally isomorphic, then dimX = dimY .

• If X
rational−→ Y is dominant, then dimX ≥ dimY .

• dimAn = n.
• dimX × Y = dimX + dimY .
• A hypersurface V (f) ⊂ An has pure dimension n − 1 (i.e. pure codimension 1: the notion of

codimension is annoying when ambient space is not pure, can defined as minimum of codimensions
at points).



NOTES FOR MATH 763: INTRODUCTION TO ALGEBRAIC GEOMETRY FALL 2012 17

• If Y is irreducible, and X ( Y is a proper closed subset. Then dimX < dimY .

Proof. Suppose that we have a transcendence basis {y1, . . . , yn} ∈ k[Y ] of k(Y ). Then k[X] =
k[Y ]/I(X). Need to show that yi|X are algebraically dependent. Since X is not empty, let f ∈ k(X)
be a non-zero element of I(X) ⊂ k[Y ]. Then f satisfies a polynomial relation

∑
aif

i = 0 for some
ai ∈ k[y1, . . . , yn]. We can assume that a0 6= 0 (just factor out f ’s), so f divides a0 and therefore
a0(y1, . . . , ym)|X = 0. �

Corollary. An algebraic set X ⊂ An is a hypersurface if and only if X has pure dimension n− 1.

Proof. We already have that hypersurfaces have dimension n − 1. Conversely, if suppose first that X is
irreducible. Then there is an f ∈ k[An] so that f |X = 0. We can assume f is irreducible because X is. Then
X ⊂ V (f), and then dimX = dimV (f), then X = V (f). �

Example. If we look at algebraic subsets of A2, any such algebraic subset is the union of irreducible com-
ponenets. The dimension 2 component can only be A2, the dimension 1 component has to be a hypersurface,
so an algebraic curve, and dimension 0 ones are points.

Theorem. Let X be an irreducible (affine) variety. Suppose taht f ∈ k[X] is a non-zero function. Then
V (f) ⊂ X has pure codimension 1.

Example. Consider x2 + y2 = z2 which gives an irreducible hypersurface in A3 of dimension 2. Then
V (z =constant) ∩ V (x2 + y2 = z2) will have dimension 1. But the real picture is misleading because the
vertex of the cone actually has more stuff going through it in C, for example.

Proof of theorem. We want to reduce to the case An. We will assume, without loss of generality, that V (f)
is irreducible (why? Because if V (f) =

⋃
Yi, we can find a point yi ∈ Yi that is not in any other Yj , so that

yi ∈ U ⊂ X −
⋃
j 6=i Yi. Then U is open, so dense, so has the same dimension as X, and V (f) ∩ U = Yi ∩ U ,

so we can replace X with U).
Next, we look at Noether normalization lemma which says that there exist x1, . . . , xn ∈ k[X] that

are algebraiclyly independent so that k[X] is a finitely generated k[x1, . . . , xn]-module. Geometrically:
k[x1, . . . , xn] ↪→ k[X] defines a morphism of varieties An ← X : π so that π is dominant.

Remark. If f : X → Y is a map of affine varieties, then f is finite if and only if k[X] is finitely generated
k[Y ]-module. So Noethern normalization lemma says that X → An is finite.

Further, the generators x1, . . . , xn can always be chosen to be linear combinations of given generators of
k[X]. So if X ⊂ Am is algebraic, in the proof of Noether normalization lemma, π : X → An is linear (in fact
a projection), i.e. a restriction of a linear map from Am to An.

So we are going to prove that for Y = V (f) we have the following. Given that π : X → An and Y ⊂ X,

we will show that Ỹ = ¯π(Y ) ⊂ An is in fact equal to V (f̃) ⊂ An so dim Ỹ = n− 1. Then dimY ≥ n− 1 as

π : Y → Ỹ is dominant, and since Y is proper, dimY = n− 1.
Next time, we will use integrality to prove this: that product of integral elements is integral and k[An] is

integrally closed. �

11. October 9

Last time we said that if X =irreducible variety, then dimX = tr deg k(X) (transcendence degree of the
field extension).

We have two properties:

(1) If X ⊂ Y (Y is irreducible) and X̄ 6= Y , then dimX < dimY .

(2) If X
rational−→ Y is dominant, then dimX ≥ dimY .

Theorem (Main Thereom). Suppose X is affine irreducible, and f ∈ k[X]−{0}. Then V (f) ⊂ X has pure
codimension 1 (so every component has codimension 1).

For the proof the main idea is to reduce to the case where X is the affine space by using the Noether
Normalization Lemma.

Lemma (Noether Normalization Lemma). If X ⊂ An is affine, there is a dominant map ν : X → Am which
is finite, i.e. k[X] is a finitely generated k[Am]-module (in particular, [k(X) : k(Am)] <∞.
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Remark. This ν can be chosen to be a projection that is the restriction of a linear map ν : An → Am, when
k is infinite.

Also, finite maps are automatically closed, so dominant ν is in fact surjective.

11.1. Proof of main theorem.

Proof continued. So far we have two steps:

(1) Without loss of generality we may assume that Y = V (f) is irreducible.
(2) Use Noether Normalization Lemma to choose dominant ν : X → Am where m = dimX.

So we need to show that ¯ν(Y ) = V (f̃) ⊂ Am for some f̃ ∈ k[Am] − {0}. This will imply everything

because: dim ¯V (Y ) = Ỹ = m − 1 and since ν : Y → Ỹ is dominant, then dimY ≥ m − 1, and since Y is a
hypersurface, dimY ≤ m− 1.

Geometrically: we have

Y = V (f)

��

// X

ν

��

Ỹ = ¯V (Y ) // An

We want to show ¯V (Y ) = V (f̃) for some f̃ .
Algebraically: ν∗ : k[Am] ↪→ k[X], the latter a finitely generated odule of k[Am]. Then g ∈ k[Am] satisfies

g|Ỹ = 0 if and only if g ∈ rad 〈f〉 ⊂ k[X]. But k[An] ⊂ k[X], so g ∈ rad 〈f〉 ∩ k[Am].

So we want to construct f̃ ∈ k[An]− {0} such that rad
〈
f̃
〉

= rad 〈f〉 ∩ k[Am]. This will follow the usual

going-up-going-down theorems about how chains of ideals in various rings behave.
So we have k[Am] ⊂ k(Am) ⊂ ¯k[Am] and k[Am] ⊂ k[X] ⊂ k(X) ⊂ [̄k(Am)] (we choose the last embedding).

Now we can take f̃ to be the Normk(X)/k(Am)f . Two ways: the norm is the free term of a minimal
polynomial, or the product of certain conjugates (with certain powers, but since we care about radicals, the
powers don’t matter).

(0) f̃ ∈ k[Am]. Indeed: f is integral over k[Am] since f ∈ k[X] which is a finitely generated module

means that all of f ’s conjugates are integral, so certainly the norm f̃ is integral over k[Am]. As the

latter is integrally closed, we must have f̃ ∈ k[Am].

(1) rad
〈
f̃
〉
⊃ rad 〈f〉 ∩ k[Am].

Suppose g ∈ rad 〈f〉 ∩ k[Am], so g ∈ k[Am] and gk = f · h for h ∈ k[X]. So
gk

f
∈ k(X) is integral

over k[Am]. Then
gk

fσ
is integral where fσ is a conjugate. Hence,

gN

f̃
is integral, so it belongs to

k(Am) and hence to k[Am]. So f̃ divides gN in k[Am] (i.e. gN ∈ k[Am] · f̃).

(2) rad
〈
f̃
〉
⊂ rad 〈f〉 ∩ k[Am]. It is enough to show that f̃ ∈ rad 〈f〉. This is easy because in fact

f̃ ∈ k[X] · f because fr + ar−1f
r−1 + · · · + a0 = 0 for ai ∈ k[Am] for a minimal polynomial and

a0 = f̃ , so f̃ ∈ k[Am] · f ⊂ k[X] · f . �

Corollary. Given Y =irreducible pre-variety, X ⊂ Y a closed irreducible sub(pre-)variety. For any integer
d between dimX and dimY , there is an irreducible closed sub(pre-)-variety X ⊂ Z ⊂ Y such that dimZ = d.

Proof. Replace Y by an affine neighborhood of x ∈ X (after Z is constructied in this neighborhood, take its
closure in Y ).

If X = Y there is nothing to prove, otherwise: X ⊂ V (f) with f ∈ k[Y ]− {0}, and we can replace Y by
one of the irreducible components of V (f). �

Definition (Topological definition of dimension in a “noetherian topology”). For a pre-variety X, dimX =
max{n : X0 ( X1 ( · · · ( Xn ⊂ X with all Xi are closed and irreducible}.

Remark. With this definition, the corollary says that given Y ⊂ X for an irreducible X, we can always
refine to a chain that gives the dimension of X.

If X is affine, then topdimX =Krull dimension of k[X].
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If R is a finitely genearated algebra with no zero divisors, then we have proven that the Krull dimsnion
of R is the transcendence degree of its field of fractions.

Lemma. Let Y be an affine irreducible (or just affine of pure dimension) with dimension n. Suppose X ⊂ Y
is closed, and also of pure dimension n−m (so pure codimension m).

Then there exist f1, . . . , fm ∈ k[Y ] such that X is contained in V (f1, . . . , fm) and V (f1, . . . , fm) is of pure
dimension n−m.

Remark (Krull’s Height Theorem). All components of V (f1, . . . , fm) ⊂ Y for fi ∈ k[Y ] have dimension
n−m or more.

Proof of lemma. We proceed by induction.
For first step, we need to choose f1 such that f1|X = 0 and V (f1) ⊂ Y has pure codimension n − 1. It

is enough to ensure that f does not vanish on any componenet of Y . Choose a point on each component
of Y that is outside of X. Then there is a function f ∈ I(X), but does not vanish on those points. This is
so because I(X) is a vector space, and for every point yi we have I(X) ∪ {yi}) ⊂ I(X) is a proper vector
subspace. Hence, I(X) is not the union of finitely many of those if k is infinite, which it is as k = k̄, thus
we can find f ∈ I(X0−

⋃
I(X ∪ {yi}) 6= ∅. �

12. October 11

Homework is due Thursday October 18, NOT Tuesday October 16.

12.1. Complete intersections. Last time we proved the key theorem: that if X =irreducible and f : X →
A1 is not zero, then {f = 0} ⊂ X has pure codimension 1.

We also proved the lemma that if Y =affine of pure dimension n, and X ⊂ Y is closed of pure dimension
n − m, then there exist f1, . . . , fm ∈ k[X] such that X ⊂ V (f1, . . . , fm) and such that V (f1, . . . , fm) has
pure codimension n−m. What the lemma says is that X has a bunch of components, some of which are of
pure codimension m.

Remark (Terminology).

(1) X ⊂ Y is a set-theoretic complete intersection if there exist f1, . . . , fm such that X = V (f1, . . . , fm).
(2) X ⊂ Y is a (ideal-theoretic or scheme-theoretic) complete intersection if fi’s can be chosen so that
〈f1, . . . , fm〉 = I(X) ⊂ k[Y ].

Example. Let Y = V (y2 − x3). Then X = {(a3, a2)} ⊂ Y for a 6= 0 is not a complete intersection, even
set-theoretically.

Easiest way to see this is to choose a parametrization. We have a bjiective regular map t→ (t3, t2), which
is birational/dominant, thus gives an embedding k[Y ] ↪→ k[t], so the ring is k[Y ] = k[t2, t3].

If f ∈ k[Y ] vansihes only on X, then f(t3, t2) vanishes only at a, so f(t3, t2) = c · (t − a)n, but the
right-hand side does lie in this ring unless n = 0.

Note that single points are contained in sets of finitely many points that are zero-loci, just not exactly in
a zero-locus with a single point unless a = 0.

Remark. k[Y ] is a UFD if and only if every hypersurface is a complete intersection.

Theorem (Generalized Key Theorem). Let f : X → Y be a map between (pre-)varieties of pure dimension.
Then for any y ∈ f(X), dim f−1(Y ) ≥ dimX − dimY .

Remark. The estimate is better if f is assumed dominant (replace Y with the closure of f(X)).

Proof of theorem. We can assume without loss of generality that both X and Y are affine. For any y ∈ Y ,
there exist g1, . . . , gn ∈ k[Y ] where n = dimY such that S = V (g1, . . . , g)n) 3 y is finite.

Then V (g1 ◦ f, g2 ◦ f, . . . , gn ◦ f) =finite union of fibers, including the fiber f−1(y). So every component
of f−1(y) has dimension at least dimX − n = dimX − dimY . �

Remark (To be proved later). If f : X → Y is dominant, and X, Y are irreducible, then there is a dense
open U ⊂ Y such that for any y ∈ Y , f−1(y) is non-empty and has dimension dimX − dimY .

In particular, f(X) has a big locally closed subset.
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Example. Consider A2 → A2 given by (x, y)→ (x, yx). The image if {(x, y) : x 6= 0} ∪ {(0, 0}, which is not
locally closed.

This is bad in the way that the fiber at the origin is 1-dimension, on the y-axis away from the origin, the
fibers are 0-dimensional, but away from the y-axis everything is fine (fibers are 2-dimensional as they should
be)???

Main reason not to prove this now, is that Noether Normalization Lemma is essentially about projections.
These are best handled in projective spaces.

12.2. Projective variety. We let Pn to be the set of lines through 0 in kn+1. Homogeneous coordinates
(x0 : . . . : xn) correspond to lines, have equivalence k · (x0, . . . , xn) 6= 0. This gives Pn as a set.

Now, Ui = {(x0 : . . . : xn) : xi 6= 0} ⊂ Pn is isomorphic to An =

{
(
x0
xi
,
x1
xi
, . . . ,

xn
xi

)

}
. Clearly, Pn =⋃n

i=0 Ui. The transition functions are obviously regular. Hence, Pn is an algebraic (pre-)variety (will prove
is separated next time).

Remark. A projective variety is a closed subvariety of Pn, and a quasi-projective variety=subvariety of Pn
(this includes all quasi-affine varieties).

Example. Consider P1. We will think of it as A1 ∪{∞} = U0 ∪U∞, where k[U0] = k[t], then k[U∞] = k[ 1t ].

Since U0 and U1 are both dense in P1, we get k(P1) = k(t), but k[U0] ∩ k[U∞] = k. So only regular
functions on P1 → A1 are constants. Hence, P1 6↪→ An for any n, so P1 is not affine.

Similarly, any Pn → A1 is constant.

Example. Let f ∈ k[x0, . . . , xn] be a homogeneous poylnomial. Then set V (f) = {(x0 : . . . : xn) : f(x0, . . . , xn) =
0}. Clearly V (f) is closed in projective space. V (f) ∩ Ui = V (f(a0, . . . , ai−1, 1, . . . , ai+1, an)).

Also clearly, for any set S ⊂ k[x0, . . . , xn] of homogeneous polynomials, V (S) =
⋂
f∈S v(f) ⊂ Pn is closed.

What is not immediately clear is that the converse is also true: any closed subset X ⊂ Pn is of this form.

Proof. Suppose X ⊂ Pn is closed. Take y ∈ Pn −X. There exists a homogeneous f such that f |X = 0 but
f(y) 6= 0. Indeed, suppose y ∈ U0 ⊂ Pn with U0 = An 3 (a1, . . . , an). Then there exists g(a1, . . . , an) such
that g|X∩U0

= 0.

We homogenzie this polynoimal to get f(x0, x1, . . . , xn) = g(
x1
x0
, . . . ,

xn
x0

) · x0 deg(g).

The only bad thing that can happen is that at the hyperplane at infininty x0 = 0, f may not behave well,
but we addresses that by considering x0 · f .

Now start writing V (f1) ⊃ V (f1, f2) ⊃ V (f1, f2, f3) ⊃ · · · and us eht noetherian property. �

Remark. Another way of stating this claim is that Pn−V (f) for homogeneous f form a basis for the Zariski
topology of Pn. In fact, Ui = Pn−V (xi), and even better (but not immediately clear): if deg f > 0, P−V (f)
are affine.

13. October 16

Last time: we discussed the dimension of fibers, and definition of Pn 3 (x0 : . . . : xn). We proved that
any closed subvariety of Pn is V (S) for a set S ⊂ k[x0, . . . , xn] of homogeneous polynomials.

13.1. Seperability of Pn. The following variations of the previous results are useful:

• A closed subvariety of An × Pm 3 ((x1, . . . , xn), (y0 : . . . : yn)) is a zero-locu of a set of polynomials
in k[x1, . . . , xn, y0, . . . , yn] which are homogeneous in the y’s.

• A closed subvariety of Pn × Pm 3 ((x0 : . . . : xn), (y0 : . . . : ym)) is given by a polynmoials in
k[x0, . . . , xn, y0, . . . , ym] for homogeneous x′ and y′s.

Example. We will show that ∆ ⊂ Pn × Pn is closed. We want to write a condition that (x0 : . . . xn) =

(y0 : yn). This is equivalent to requiring that

(
x0 . . . xn
y0 . . . yn

)
has rank 1, i.e. that xiyj − yixj = 0 for any

0 ≤ i, j ≤ n.

Corollary. Pn is separated, so any quasi-projective pre-variety is separated, so a variety.



NOTES FOR MATH 763: INTRODUCTION TO ALGEBRAIC GEOMETRY FALL 2012 21

13.2. Projective Closures.

Example. Consider X = V (x2 + y2 − 1) ⊂ A2 3 (x, y). We can consider this as sitting inside P2 3
(x0 : x1 : x2) with x = x1

x0
, y = x2

x0
.

Thus we get V (x21 + x22 − x20) ⊂ P2, determining a projective curve X̄.
(We say X is an affine quadric, while X̄ is a projective quadric).
In fact, X̄ =irredcuible projective curve, so it is the Zariski closure of X.

Exercise. A closed subvariety of Pn has pure codimension 1 if and only if X = V (f) for homogeneous f .
Furthermore, X =irreducible if and only if f can be taken irreducible.

Example. Take X : x2 + y2 − 1 = 0 ⊂ A2 3 (x, y). We have maps X − {(−1,−)} 3 (x, y) → y
x+1 and

( 1−u2

u2+1 ,
2u
u2+1 )← u ∈ A1 − {±i}.

If we pass to the projective closures, the following happens.
First, set x = x1

x0
and y = x2

x0
. This gives X ⊂ X̄. Also let u = u1

u0
, which gives A1 ⊂ P1.

Thus the above maps become rational maps X̄ ↔ P1. In homogeneous coordinates, we get (x0 : x1 : x2)→
y
x+1 = x2/x1

x1/x0+1 = x2

x1+x0
. This is all if we just consider as a rational map from P2 ⊃ X̄ to A1 ⊂ P1, but

otherwise x2

x1+x0
= (x1 + x0 : x2).

For the reverse map we get (u1 + 1: 1 − u2 : 2u) ← (u0 : u1) where u = u1

u0
, so in fact we have (u21 +

u20 : u20 − u21 : 2u1u0)← (u0 : u1).
It turns out that the map P1 → X̄ is regular because (u21 + u20 : u20 − u21 : 2u1u2) = (0: 0 : 0) only if

(u1 : u0) = (0: 0) 6∈ P1.
The map X̄ → P1 is not regular because (x1 + x0 : x2) = (0: 0 : 0) if (x0 : x1 : x1) = (1: − 1: 0). It is

however rational everywhere because this was only one representation! Another one is (x2 : x0 − x1) since
X̄ = V (x21 + x22 − x20). Hence we actually have a ratoinal isomorphism X̄ ∼= P1.

Exercise. Every irreducible quadric in P2 is isomorphc to X̄ ∼= P1.

Exercise (Homework). Every rational map P1 → Pn is regular. So any rational map A1 → Pn is also
regular.

13.3. Another point of view. We have a map An+1 − {0} p→ Pn.
For any X ⊂ Pn, p−1(X) is “strech”-invariant (Pn = An+1 − {0}/k×).

Proposition. X is closed if and only if p−1(X) is closed. In particular, the Zariski topology on Pn is the
quotient topology of An+1.

Proof. One direction is clear by construction of p. For the other, we see that p locally admits a regular
section. What does this mean? It means that on each Ui ⊂ Pn given by Ui : xi 6= 0 we have an inverse to
p sending (x0 : . . . : xn) → (x0

xi
, . . . , xnxi ). This is an isomorphism Ui → Ui × (A1 − {0}) with k× acting on

A1 − {0}. �

This is an example of a principal k×-bundle (aka k×-torsor).

So we now have the following correspondence: “closed subsets of Pn”↔“k×-invariant closed subsets of
An+1 − {0}”→“k×-invaraint closed subsets of An+1 containing 0”.

Ultimately, we get X>−1(X) ∪ {0} = CX is the affine cone of X. What can we say about I(CX) ⊂
k[x0, . . . , xn]?

Proposition. Closed Y ⊂ An+1 is k×-invaraint if and only if I(Y ) ⊂ k[x0, . . . , xn] is homogeneous.

Proof. If the ideal is homogeneous, it is generated by homogeneous equations, so one direction is clear. For

the converse, if f =
∑d
i=1 fi ∈ I(Y ) where fi are homogeneous of degree i. Since Y is k×-invariant, we know

that f (λ)(x0, . . . , xn) = f(λx0, . . . , λxn) ∈ I(X).
But span

〈
f (λ)

〉
= span 〈fi〉 by Vandermonde determinant (which requires infinite field! or polynomial in

λ at any particular point has to be 0, so its components should be). �

Theorem (Projective Nullstellensatz). We have a correspondence X → I(V ) and V (J) ← J where I ⊂
k[x0, . . . , xn] and X ⊂ Pn, which is a bijection between closed subvarieties of Pn and radical homogeneous
proper ideals J ( k[x0, . . . , xn], i.e. J ⊂ 〈x0, . . . , xn〉, the unique maximal homogeneous ideal.
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Theorem (Projective Weak Nullstellensatz). For homogeneous ideal J ⊂ k[x0, . . . , xn], ∅ = V (J) ⊂ Pn if
and only if J ⊃ (x0, . . . , xn)N for some N >> 0 (i.e. (J)(N), the degree N homogeneous part of J , contains,
i.e. is, k[x0, . . . , xn](N)).

This is much more manageable than the affine case because the two sides of the equality (J)(N) =
k[x0, . . . , xn](N)are both finite-dimensional vector-spaces.

14. October 18

Last time: we had the projective Nullstellensatz which gave a bijection between closed X ⊂ Pn and radical
homogenenous ideals I ⊂ 〈x0, . . . , xn〉 ⊂ k[x0, . . . , xn].

The weak Nullstellensatz said that given homogeneous ideal J ⊂ k[x0, . . . , xn], then V (J) = ∅ if and only
if J (N) = k[x0 . . . , xn](N) (graded pieces are equal) for N >> 0.

14.1. Theorem of the day.

Theorem. For any f : X → Y , with X projective and Y separated, f(X) is closed.

Corollary.

(1) Such f is closed.
(2) Suppose f : X → A1, X is projective. Then f(X) is either finite or A1. But we can also consder

f : X → A1 ⊂ P1, so then f(X) must be closed in P1, so cannot be A1. Hence, #f(X) <∞.
If X is connected and projective, then any regular function on X is constant.

(3) If X both projective and affine, then #X <∞.
(4) If locally closed X ⊂ Pn is actually projective, then X is closed.

We will prove the theorem by proving the following proposition:

Proposition. For any pre-variety Y , the projection π2 : Pn × Y → Y is closed.

The Proposition implies the Theorem. Given X ⊂ Pn closed and f : X → Y , then f(X) = π2(Γf ) where
Γf = {(x, y) ∈ Pn × Y : x ∈ X, y = f(x)}. If Y is separated, then Γf is closed.

Hence, π2(Γf ) is closed since the proposition tells us that π2 is a closed map. �

Proof of Proposition. The key to the proof will be the weak Nullstellensatz.
The statement is local on Y , so we may assume Y ⊂ Am. But in fact, we may assume Y = Am since

Pn × Y ⊂ Pn × Am gets sent to Y ⊂ Am by the projection map π2.
Given closed X ⊂ Pn × Am and y ∈ Am − π2(X), we need to construct U ⊂ Am containing y such that

U ⊂ Am − π2(X).
But we know that X = V (S) where S ⊂ {f ∈ k[x0, . . . , xn, y1, . . . , ym] : f is homogeneous in xi’s}.
But what is X ∩ π−12 (y)? We can think of it as Xy = X ∩ (Pn × {y}) = V (Sy) where Sy = {f(−, y) : f ∈

S} ⊂ k[x1, . . . , xn].
Therefore, y 6∈ π2(X) if and only if Xy = ∅, if and only if for some N , the ideal spanned by Sy contains

k[x0, . . . , xn](N).
This is equivalent to requiring that there exists f1, . . . , fk ∈ S (so f1(−, y), . . . , fk(−, y) ∈ Sy) and

homogenenous polynomials g1, . . . , gk ∈ k[x0, . . . , xn] such that {fi(−, y)·gi}ki=1 is a basis in k[x0, . . . , xn](N).
But the condition that this is a basis gives an open subset of Am (some determinant is not equal to

zero). �

Remark (Terminology). A variety X such that for any pre-variety Y , the projection π2 : X × Y → Y is
closed is called complete (some call it proper). So we showed that Pn is complete, and hence any projective
variety (closed subset of Pn) is complete.

14.2. Examples of projective varieties.

Example (Segre variety). The Segre embedding Pn×Pm ↪→ Pnm+n+m is given by ((xi), (yi)) 7→ (xiyj)i=0,...,n
j=0,...,n

(xi and yj are homogeneous coordinates).
It is convenient to index coordinates of Pnm+n+m by two indices, so Pnm+n+m 3 zij . Then the embedding

is zij = xiyj .
This actually gives us (l ⊂ kn+1, l′ ⊂ km+1) 7→ (l ⊗ l′ ⊂ kn+1 ⊗ km+1) where l, l′ are lines.
We claim that S is a closed embedding.
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Proof. (zij) ∈ S(Pn × Pm) if and only if rk(zij) = 1 which is the closed condition that all 2 × 2 minors
vanished.

Remark. We can prove that the image is closed by remarking that the product of complete varieties is
complete, so their image is closed.

To construct the inverse map s−1 : s(Pn × Pm)→ Pn × Pm, note that it is given by (zij) 7→ ((zi0), (z0j)).
This is problematic if one of the columns is identically zero, but we have many representations: (zij) →
((zik, (zlj) for any fixed k and l. For every point, at least one of these representations works. �

Example. When n = m = 1, s(P1 × P1) ⊂ P3 is given by V (z00z11 − z01z10) which is a quadric surface in
3-dimensinoal space. So the two families of lines on this quadric are images of the P1 × {x} and {x} × P1.

Corollary. Pn × Pm is projective. Hence product of projective varieties is projective, and product of quasi-
projective varieties is quasi-projective.

Now some of the problems hard enough to be homework become easy.

Example (Homework). Let Vd =vector space of polynomials of degree ≤ d. Let Ṽd be the corresponding
projective space (i.e. Vd − {0}/k×, alternative notation is P(Vd) or P(V ∗d )).

For 1 ≤ d′ < d, consider product map Ṽd′ × Ṽd−d′ → Ṽd. This is a map from a projective variety to a
separated variety, so it’s closed: hence the condition that polynomials split into a product of two polynomials
of degree d′ and d− d′ is Zariski closed.

Example (Veronese Embedding). The Veronese embedding is v : Pn → PN sending (xi) → (all monomials
of degree d in the xi).

Fact: this is also a closed embedding. Linear algbera says that it sends (l ⊂ kn+1) 7→ (ld ⊂ Symdkn+1).

Example. If n = 1, d = 2, then (x0 : x1)→ (x20 : x0x1 : x21) = (y0 : y1 : y2). The only condition is y0y2−y21 =
0.

So P1 is isomorphic to quadric in P2.

Example (The Grassmanian). Gr(k, n) =linear spaces W ⊂ kn of dimension k, which is the smae as

projective subspaces W̃ ⊂ Ṽ = Pn−1 of dimension k − 1. We will continue this next time.

15. October 23

Last time there were two important results. The most important result was the completeness property of
projective varieties: for projective X and any Y , π2 : X × Y → Y is closed (if Y is separated).

The second important result was the Segre embedding: s : Pn × Pm ↪→ Pnm+n+m.

15.1. Grammansian. We denote by Gr(k, n) the k-dimensional subspaces W in n-dimensinoal vector space

kn = V . This is the same as the projective k − 1-dimensional subspaces W̃ ⊂ Pn−1 = Ṽ .
Choosing basis B =n× k matrices of rank B up to right multiplication by GLk(k).
We define Gr(k, n) as a variety by using charts. Fix a subspace U ⊂ V with dimU = n − k. Then

{W ∈ Gr(k, n) : W ∩ U = 0} ∼= Ak(n−k).
Choose one W ′. Then any such W is a graph of a linear map W ′ → U . E.g. if W ′ = 〈e1, . . . , ek〉,

U = 〈ek+1, . . . , en〉. Then we have a set of matrices B such that det(bij)
k
i,j=1 6= 0. Acting by GL(k), we can

make B =
(
I
)

where ∗ =coordinates on this char are Ak(n−k).
It is not clear from this description exactly what the varietiy is.

Definition (Plücker coordinates). We have a p : Gr(k, n) ↪→ P(nk)−1.

This is W ↪→ ΛkW since if W ⊂ V ,then ΛkW ⊂ ΛkV = k(nk).
Explicitly: B ↪→ (det(bαij)

k
i,j=1) indexed by 1 ≤ α1 < · · · < αk ≤ n.

Proposition. p is a closed embedding.

Proof. Consider an affine chart A(nk)−1 ⊂ P(nk)−1. Its preimage is one of the carts on Gr(k, n).
For instance, consider the chart where det(bij)

k
i,j=1 6= 0. IN these coordinates, p looks like this:
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B =
(
I
)
7→ (det(bαij)) = (1: ∗ : . . . : ∗︸ ︷︷ ︸

non-homogeneous

coordinates on A
(
n
k

)
−1

). They include all the original coordinates.

Up to reindexing, x̄ 7→ (x̄, F (x̄)). �

Remark. Using more linear algebra, we can write explicit equations, called Plücker relations, for p(Gr(k, n)) ⊂
P(nk)−1. They are quadratic.

This is an example of one of my favorite varieties: its points classify something, so the Plücker variety
actually answers a classification problem.

15.2. Incidence Variety.

Definition. Inc ⊂ An×Gr(k, n) is defined by {(x,W ) : x ∈W}. This it the “tautolical (or universal) family
of subspaces W ⊂ V ”.

The above is indeed closed, which is easy to see if we consider the affine charts.

Remark. What is a family? If we have map X → Y , then the fibers form a family parametrized by Y . E.g.
An × Y → Y is a constant family of vector spaces over Y .

So, family of subvarieties if X ⊂ An × Y such that Xy =fiber of X over y ∈ Y is a subspace of An. (The
really correct thing to say is “subbundle in a trivial vector bundel”).

The universality of Inc means the following: a family Xy like the above defines a map Y → Gr(k, n)
sending y → Xy ⊂ An. This is a regular map, so this gives a universal property of the Grassmanian.

Definition. We also have ˜Inc ⊂ Pn−1 × Gr(k, n), where ˜Inc = {(x, W̃ ) : x ∈ W̃}. Again, this is a closed
subvariety, hence a projective variety as both Pn−1 and Gr(k, n) are projective.

Example. If X ⊂ Gr(n, k) is closed, then
⋃
W∈XW ⊂ An is closed. It is π1(π−12 (X)∩ Inc), therefore closed,

where:
Inc

��

An ×Gr(k, n)

π1

''

π2

yy
An Gr(k, n)

Example.
⋃
W̃∈X W̃ ⊂ Pn−1 is closed.

Example. Given closed Y ⊂ Pn, the set of projective subspaces meeting it will be closed, specifically the
set is {W̃ ∈ Gr(k, n) : W̃ ∩ Y 6= ∅}.

Showing its closerd is similar: π2(π−11 (Y )∩ ˜Inc). Note that since π2 is the projection along the space, we
need to take the space to be complete (e.g projective), otherwise this is not closed.

Example. Consider {x} = {(1 : 0 : . . . : 0)} ⊂ Pn and Y ⊂ Pn−1 = {(0 : ∗ : . . . : ∗)} ⊂ Pn.
The union of all lines joining {x} with points of Y is closed in P3 by the previous examples. This is called

the “projective cone of Y ”.

15.3. Projections in projective space. Geometric appraoch: Take Pn, fix a point x ∈ Pn. Choose a
hyperplane H disjoint from {x}. This hyperplane is isomorphic to Pn−1, and for any other point y we consider
the line joining x and y and where it intersects H. So a projection is a regular map Pn − {x} → H ∼= Pn−1.

Algebraic approach: by a linear change of coordinates, we can assume {x} = {(1 : 0 : . . . : 0)}, and
H = {(0 : ∗ : . . . : ∗)}, then (x0 : . . . : xn) 7→ (x1 : . . . : xn). More generally, this is a linear map kn+1 → kn.

Third approach: coordinate-free version: x ∈ Pn is a line l ⊂ V ∼= kn+1. Then we have a map Ṽ → ˜(V/l).
Fourth approach: Consider in Gr(2, n+ 1) (lines in in Pn) the subvariety Y of lines through x. Then the

map Pn − {x} → Y is given by x 6= y →line through x and y. Then a choice of H gives Y ∼= H ∼= Pn−1.

Remark. These projections allow us to study dimensions of projective varieties.

Iterated projection: (x0 : . . . : xn)→ (xm : . . . : xn). This looks like projection from a subspace.
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16. October 25

Missing.

17. October 30

Missing.

18. November 1

18.1. Tangent spaces. Last time: tangent spaces. We have several approaches (X =affine) to defining it:

(1) X ⊂ An, TxX = {a ∈ kn : 〈df(x), a〉 = 0 for all f ∈ I(X)}.
(2) Derivations ∂ : k[X]→ k such that ∂(fg) = f∂g + (∂f)g.
(3) TxX = (mx/m

2
x)∗.

Functoraility: X,Y are affine, then Φ: X → Y induces dΦ: Tx → TyY where y = Φ(x). We can show
this in three ways:

(1) If X ⊂ An and Y ⊂ A2, then dΦ(x) = (
∂Φi
∂xi

(x)). This is not uniquely-defined, but its values are

uniquely defined.
(2) A derivation ∂ : k[x]→ k induces a derivation dΦ(x)(∂) : k[Y ]→ k, which will be ∂ ◦ Φ∗

(3) Φ∗ : k[Y ] → k[X] satisfies Φ∗(my) ⊂ mx and Φ∗(m2
y) ⊂ Φ∗(m2

x). Then we have an induces map

Φ∗ : (my/m
2
y)→ (mx/m

2
x). Then dΦ(x) is the adjoint (dual).

Remark. dΦ(x) is defined for any Φ regular on a neighborhood of x. This is clear for defintion 1, but for
definitions 2 and 3 they become non-trivial algebraic facts.

Suppose Φ is regular on U = D(f) = X − V (f), and k[U ] = k[X]f . Then dΦ(x) : TxU → TxY . We need
to show that TxU = TxX.

For the second definition, this says that derivation k[X]→ k uniquely extends to k[U ]→ k. But elements
of k[U ] are g

fn , so the unique extension will be given by the quotient rule.

For the third defintion, we are looking at k[X]/mkx
∼= k[x]f/m

k
x · k[x]f for k ≥ 0 because f 6∈ mx. So f is

invertible in k[X]/mkx.

Definition. This allows us to define the tangent space at x ∈ X for any pre-variety X as TxU for open
affine U ⊂ X. We can use the differentials of transition functions to show independence of U .

Remark (Recall). We have Ox,X =local ring of a point. If X is affine, Ox,X = k[X]mx . We can actually
modify definitions 2 and 3 as follows:

(2) TxX 3 δ : Ox,X → k where ∂(fg) = (∂f)g(x) + f(x)∂g
(3) TxX = (m̃x/m̃

2
x)∗ where m̃x ⊂ Ox,X with m̃x = {f : f(x) = 0}.

The equivalence of these definitions and the original ones are precisely the argument from the previous
remark.

18.2. Properties of TxX.

Proposition.

(1) For any x, {x ∈ X : dimTxX ≥ s} is closed.

Proof. In definition 1, X ⊂ An, TxX is the zero-set of of dfi(x) where 〈f1, . . . , fm〉 = I(X). So look
at the rank of the matrix (df1, df2, . . . , dfn). Alternatively, X → Am given by (f1, . . . , fm) gives rank
of Jacobian... �

(2) If X is irreducible, then dimTxX ≥ dimX with equality on a dense open set. We checked this for
hypersurfaces, and any X is birational to a hypersurface.

Note: If X =
⋃
Xi where Xi are irreducible components of X. If x ∈ Xi, then TxXi ⊂ TxX (this

holds for any subvariety)

Corollary. dimTxX ≥ dimxX. Furthermore, we have equality on a dense open set (openness is not clear
at this point). Fact: equality is only possible if X is irreducible at that point.

Definition. X is smooth if dimTxX = dimxX and singular otherwise.
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Remark. X is smooth if and only if Ox,X is regular.

18.3. Geometry of smooth points. Fix x ∈ X. Consider local parameters at x, i.e. (t1, . . . , tm) regular
near x such that they vanish at the point, and form a basis in m̃/m̃2, where m̃ ⊂ Ox,X . (If X ⊂ An, then we
can always choose such local parameters to be linear).

Remark. The image of f in m̃/m̃2 is the differential df(x) ∈ T ∗xX.

The local parameters are particularly useful at a smooth point (because then the local parameters will be
algebraically independent).

Lemma. (t1, . . . , tm) = m̃

Proof. This is Nakayama’s Lemma. �

The geometric meaning: If X is smooth at x, then the equations say that t1 = t2 = · · · = tm = 0 has {x}
as an irreducible component. This is not new. What is new, is that for a small neough open affine U 3 x,
the maximal ideal of x is generated by exactly m elements, i.e. it is a complete intersection.

So x ∈ X is a (scheme-theoretic) local complete intersection (l.c.i.) if X is smooth. (Before: we proved
that x ∈ X is a set-theoretic l.c.i., no matter what the variety X is). In fact, x ∈ X is a an l.c.i. if and only
if x ∈ X is smooth.

Example. Suppose X =curve. Then x ∈ X is smooth if and only if m̃ ⊂ Ox,X is principal, if and only if
Ox,X is a discrete valuation ring.

We say that 0 6= f ∈ Ox,X is of the form tdg where g is a unit, i.e. g(x) 6= 0 and t is a local parameter,
i.e. 〈t〉 = m̃. Then d does not depend on the choice of t, and d = ordxf .

Example (Application). Any rational map f : X
rational−→ Pn is regular at smooth point x.

Proof. f = (f0 : . . . : fn) near x (if you want, fi ∈ Ox,X). Then we can always cancel out a large enough

power of t to make this regular. In particular, divide all the fi’s by tmin(ordfi ). �

19. November 6

Last time x ∈ X is smooth if dimTxX = dimxX. When x ∈ X is smooth, local parameters behave nicely.
Concretely, t1, . . . , tk form a basis for m̃/m̃2 (m̃ ⊂ Ox,X). This says that the dti(x) form a basis in T ∗xX
(the cotangent bundle), and ti(x) = 0.

Claim: if x ∈ X is smooth, then (t1, . . . , tk) for k = dimxX, then ti are also local parameters (except
they don’t vanish at y) for all y ∈ U for U an open neighborhood of x. This will be easy later on.

Remark. Suppose x ∈ X is smooth. Then (t1, . . . , tk) is not a chart. Consider the case of a curve: then
the local parameter is a map to A1, but there is no way for there to be an inverse map on some open subset
of A1. Consider a parabola x = y2 mapped to the line by t = x. Generically this is a two-to-one map, so
there is no way to write an inverse function, and in fact the fields of rational functions are k(

√
t) and k(t).

The fact that the t is a local parameter, means that dt(x) is bijective, but there is no algebraic inverse
function theorem. Algebraically, Ox,X is not necessarily isomorphic to O0,Ak : smoothness only assures that
the local ring is regular. In dimension 1 we have discrete valuation rings, but there’s many of them.

Remark (Terminology). Suppose f : X → Y is a morphism with x ∈ X, y = f(x) ∈ Y are smooth. Then
f is étale at x if df(x) : TxX → TyY is bijective.

(Over C, where we do have inverse function theorem, étale maps are isomorphisms locally in the analytic
sense)

Remark. We say that f is unramified if df is injective, and that f is smooth if df is surjective. (“smooth”
does not mean differentiable because everything is differentiable,but rather “submersive”).

Note that if we have a morphism f : X → Y we think of it as a family of fibers {f−1(y)}y∈Y . An easy
exercise: if f is smooth at x, then Z = f−1(y) is also smooth at x.
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19.1. Taylor series. Throughout we suppose x ∈ X is a smooth point with local parameters (t1, . . . , tk).
Recall that by Nakayama’s lemma, 〈t1, . . . , tk〉 = m̃. Then degree d monomials in (t1, . . . , tk) generate

m̃d =
〈
td1, t

d−1
1 t2, . . . ,

〉
.

Proposition. Degree d monomials in ti’s form a basis m̃d/m̃d+1

Proof. Let p(z1, . . . , zk) be a degree d homogeneous polynomial which is not identically zero. We need to
show that p(t1, . . . , tk) is not contained in m̃d+1.

We may without loss of generaliy assume that p(1, 0, 0, . . . , 0) = 1 (after a linear change of variables: if A

is an invertaible matrix, then A


t1
t2
...
tn

 =


t̄1
t̄2
...
t̄n

 give new local parameters (t̄1, . . . , t̄k))).

Then p(t1, . . . , tk) = td1+other terms.
Now consider Ox,X/〈t2,...,tk〉 = Ox,Y where Y =zero locus of (t2 = · · · = tk = 0) on X. We know that

dimx Y ≥ 1 (by dimension of fibers). But maximal ideal in Ox,Y is generated by a single element t1, so
dimTxY ≤ 1. So dimx Y = 1 dimTxY = 1 and Y is smooth at x. Furthermore, Ox,Y is a discrete valuation
ring.

We have thus reduced the problem to the case where the local ring is a DVR. In Ox,Y , td1 6∈
〈
td+1
1

〉
. Hence,

td1 6∈
〈
td+1
1 , t2, . . . , tk

〉
⊂ Ox,X , so p(t1, . . . , tk) 6∈

〈
td+1
1 , . . . , t2, . . . , tk

〉
⊃ m̃d+1. �

Corollary. Ox,X/m̃d+1 ahs a basis formed by monimla sin ti’s of degree ≤ d, i.e. Ox,X/m̃d+1 ∼= k[t1, . . . , tk]/md+1

where m = 〈t1, . . . , tk〉 ⊂ k[t1, . . . , tk].
This corresponds to computing the taylor polynomial of f ∈ Ox,X using local parameters.

Another way to see this is that the local parameters give a map t from an open set around x ∈ X to

Ak sending x → 0. This is NOT an isomorphism O0,Ak → Ox,X but it is an isomorphism modulo m̃d, i.e.

k[Ak]/m̃d+1 = O0,Ak/m̃
d+1 ∼= Ox,X/m̃d+1.

Exercise: this holds for any étale map.

19.2. Taylor series. Consider Ôx,X = lim←−Ox,X/m̃
d = {sequences of ai ∈ Ox,X/m̃i such that ai = ai+1 mod

m̃i}. This is also the completion of Ox,X inthe m̃-adic topology (basis of opens is g + m̃d).

Theorem. If x ∈ X is smooth, then Ôx,X ∼= k[[t1, . . . , tk]].

Remark (Fact). For tautological reasons, there is a natural map Ox,X → Ôx,X which is the Taylor series
map. This map is injective (algebraically

⋂
k m̃

k = 0; this should follow from Nakayama’s lemma, but not
obviously).

Corollary. (1) Ox,X is a domain.
(2) ti’s are algebraically independent.

The first means that a smooth point lies on a single irreducible compoenent (relies on injectivity of the
map). The second relies on the existence of the map.

Remark (Conrete approach to the Theorem). Assume without loss of generality that X ⊂ An (statement of
theorem is local). In fact, near x ∈ X, X can be given by n−k equations f1, . . . , fn−k such that the Jacobian
has maximal rank (this is smoothness). So choose k variables complementary to a maximal non-vanishing
minor. Then these k variables will be local parameters on X, and the remaining variables will be formal
power series in terms of them.

This is a formal implicit function theorem.

20. November 8

20.1. Singularities. Last time x ∈ X, smooth implies that Ôx,X ∼= k[[t1, . . . , tk]] where the ti’s are local

parameters at x. Generally, for singular points, Ôx,X determines the “formal type” of the singularity.
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Example. Consider y2 = x3 + x2 and y2 = x2 where characteristic is not 2.
First, the local rings at the singularities are not isomorphic (because one singularity is reducible, the other

one is not). The formal completions of the local rings, however, are isomorphic. This formal completition is

k[[x, y]]/
〈
y2 − (x3 + x2(

〉
and k[[u, v]]/(u2 − v2). The isomorphism is y = v and u =

√
x3 + x2.

Completing a ring can introduce zero-divisors (forgets about irreducible components)

Remark. Note that Ôx,X = lim←−Ox<X/m
k = lim←− k[X]/mk = lim←− k[x, y]/(y2−(x3+x2))/mk = (lim←− k[x, y]/mk)/(y2−

(x3 + x2)).

Remark. x ∈ X is smooth if and only if Ôx,X ∼= k[[t1, . . . , tk]].

Geometrically: Ôx,X are “functions on the formal neighborhood of x”. If x is smooth we call it the formal
(poly)disk.

Example. Solving linera algebraic ODE’s like f ′ = f has no non-trivial algebraic solutions (in Ox,X , but

we have solutions in Ôx,X).

Theorem. Suppose x ∈ X is smooth. Then Ox,X is a UFD.

Purely algebraic proof. Eisenbud-Harris. �

Proof from Shafarevich. Step 1: Prove that k[[t1, . . . , tk]] is a UFD. How? Well, for polynomials: Gauss’s
lemma allows for an induction to work. For formal power series, there is Weierstrass Preparation Theorem.

If f ∈ k[[t1, . . . , tk]] is such that 0 6= f(0, 0, . . . , 0, t)) ∈ k[[t]]. We can assume f(0, 0, . . . , 0, tk) =
atnk+higher order terms. We can write this as tnk (unit).

Weierrstass Prepartion THeorem says that there exists a uniue g ∈ k[[t1, . . . , tk]] (which means that
g(0, 0, . . . , 0) 6= 0) such that f · g = tnk + ak−1t

n−1
k + · · ·+ a1tk + a0 for ai ∈ k[[t1, . . . , tk−1]].

This theorem reduces factorization in k[[t1, . . . , tk]] to factorization in k[[t1, . . . , tk−1]][t] (the assumption
is not too restrictive – make a linear change of variables). By induction hypothesis and Gauss’s Lemma,
k[[t1, . . . , tk−1]] is a UFD, and so is k[[t1, . . . , tk−1]][tk].

Step 2: Ô is a UFD implies O is a UFD. We need to show that f, g ∈ O (here O must be a local ring):

(1) f |g is true in O if and only if f |g in Ô
(2) f and g have no common divisors in O if and only if f and g have no common divisors in Ô.

Note that f can be irreducible in O and reducible in Ô. For example, y2 − (x3 + x2) is irreducible in
O0,A2 but not in the completion.

So we know that
⋂
dm

d = 0 ⊂ O. Also know this module any I ⊂ O, i.e.
⋂
d(I + md) = I, which implies

that I · Ô ∩ O = I.
Then we can easily prove the first claim: f |g ∈ Ô, then g ∈ f · Ô ∩ O = f · O so f |g in O.

For the second claim, suppose that f and g have a non-unit greatest common factor α ∈ Ô. Set β =
f
α , γ = g

α ∈ Ô. Now g · β = f · γ ∈ fÔ. Take n >> 0 such that β, γ 6∈ mnÔ. Take b = β mod mnÔ.

Consider gb = gβ mod g ·mnÔ. So gb ∈ (f · Ô + (g ·mn)Ô) ∩ O. Then gb ∈ f · O + g ·mn.

So there is b′ = b mod mn such that gb′ ∈ f · O. We know that b′ = β mod mnÔ. Claim: β|b′.
This is true because f |gb′, so αβ|αγb′. Since α is the greatest common factor, we get β|γb′. But β and

γ have no common factors so β|b′. This implies that b′ = β·unit. If b′ = β · φ, then modulo mnÔ, we have
b′ = β and φ = 1+zero-divisor.

Then replace β with b′ and α with f
b′ (which is in O by first claim). �

This is cool because classification of hypersurfaces in affine space relied on unique factorization of the
coordinate ring. Hence we will get that hypersurfaces are locally given by a single equation around a smooth
point of x ∈ X (stronger: its ideal is given by that equation).

21. November 13

Last time:

Theorem. Suppose x ∈ X is smooth. Then Ox,X is a UFD.
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21.1. Hypersurfaces. Note that: f ∈ Ox,X is irreducible if and only if 〈f〉 ⊂ Ox,X is prime.
Consider Y = V (f) ⊂ X (this is well-defined only up to passing to any neighborhood of X,). This happens

if and only if Y is irreducible at x (i.e. x lies on a single irreducible component of Y ). Also, codimY = 1.
Conversely, let Y be a hypersurface in X. Then Y is a locally complete intersection at smooth x ∈ X.

This is the same as the proof for hypersurfaces in affine space: we just use unique factorization.

Definition. A codimension k subvariety Y is locally complete intersection (ideal-theoretic) at x ∈ X if:
the ideal IYx = {f ∈ Ox,X : f |Y = 0} can be generated by exactly k elements of Ox,X (I = 〈f1, . . . , fk〉).
Equivalently, there is an open affine neighborhood U of y such that I(Y ∩ U) ⊂ k[U ] is generated by k
functions.

Example (of something that is not l.c.i.). The union of coordinate axes in A3 is not l.c.i. at the origin.

Proposition. Suppose x ∈ X is smooth, and Y ⊂ X is a subvariety with x ∈ Y smooth. Then Y is a
locally complete intersection at x.

Sketch of proof. Assume x ∈ Y ⊂ X ⊂ An. Then Tx,Y ⊂ Tx,X . Recall that Tx,Y is the zero locus of df(x)
for f ∈ I(Y ), so we can find functions f1, . . . , fk ∈ I(Y ) such that dfi(x) form a basis in T⊥xi,Y ⊂ T

∗
x,X . Then

Y ⊂ V (f1, . . . , fk) ⊂ X. So Y and V (f1, . . . , fk) are two varieties smooth at x of the same dimension. They
are irreducible at x and hence coincide (near x).

Why do 〈f1, . . . , fk〉 generate the ideal Ix,Y ⊂ Ox,X? I.e. why is this ideal radical? This can be checked in

the completion Ôx,X ∼= k[[t1, . . . , tm]]. Under appropriate choice of isomorphism, Ix,Y · Ôx,X ∼= (t1, . . . , tk),
the latter certainly being radical. �

21.2. Factorization in Ox,X . What is factorization in Ox,X geometrically?
If f ∈ Ox,X can be written as f =

∏
fmii where fi’s are irreducible germs, i.e. local equations of

irreducible hypersurfaces passing through this point. We can now interpret mi as the order of vanishing of
f on Yi = V (fi) near x (but this is independent of choice of x).

Corollary. If X is smooth, and f : X − Z → A1 for Z a subvariety of codimension at least two, then f
extends regularly all of X.

Proof. Near x ∈ X, f =
g

h
with g, h ∈ Ox,X , and we can take g and h to be coprime. Then V (g) and V (h)

are hypersurfaces with no common components passing through x. Then f is not regular on V (h) − V (g)
(since multiplicity makes sense independent of the choice of smooth point). But V (h) − V (g) is dense in
V (h), and also V (h)− V (g) ⊂ Z. Then V (h) ⊂ Z, so V (h) is empty since dimension of Z is too low. �

Example. Smoothness is important. Consider V (x1, x2) ∪ V (x3, x4) ⊂ A4. Then take f to be different
constants on the two planes minus the origin.

Corollary. Suppose we have f : X
rational−→ Pn with smooth X. Then f is regular outside of codimension 2.

Proof. Locally, f = (f0 : . . . : fn) with fi ∈ Ox,X . We can assume these are without any common factors in
Ox,X . Then V (f0, . . . , fn) has codimension at least 2 (since a hypersurface will give a common factor). �

21.3. Birational vs. Biregular classification of varieties. Dimension 1 (Curves).
Suppose that X,Y are two projective smooth curves. For smooth varieties, irreducible is the same as

connected; assume they are irreducible/connected.

Now, any f : X
rational−→ Y is regular and any birational map is hence biregular.

So smooth projective curves (which over C are Riemann surfaces) up to birational equivalence are the
same as smooth projective curves up to isomorhpism. Restatement: for any finitely generated extension
K ⊃ k of transendence degree 1, there is at most one (up to isomorphism) smooth projective X such that
k(X) ∼= K.

Fact: such X exists. It is easy to find an affine curve Y ⊂ An with k(Y ) = K. Then take Ȳ ⊂ Pn, and
again k(Y ) ∼= K (In fact, we can always take n = 2). The difficult part is making sure we get a smooth curve,
i.e. how do we “resolve the singularities”, i.e. starting with a singular projective Ȳ , how to we construct
smooth projective X with ν : X → Ȳ regular and birational?

This is tricky in general, but is not hard for curves:
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(1) Ȳ ⊂ P2, we can blow up P2

(2) ν : X → Ȳ : near each singular x ∈ Y , each local ring is not a DVR, but is of dimension 1, so the
problem can be thought of as it being not integrally closed. Thus, “normalization”.

Example. We had a map P1 → ¯V (y2 − x3). There is also a map P1 → ¯V (y2 − (x3 + x2), the inverse map
is projection from the singular point.

22. November 15

Last time: we claimed that a map f : X
rational−→ Pn from smooth X was regular outside of a codimension 2.

This applies to the classification problem of biregular versus birational equivalence: in dimension 1 (curves),
any curve X ′ has a unique smooth projective model (up to isomorphism) X (i.e. X is birational to X ′).

Remark. For a smooth projective curve X, there is a bijection between {points x ∈ X} and {DVR’s
Ox,X ⊂ k(X) such that Ox,X ⊃ k}.

This reconstructs X as a ringed space from k(X).

Remark. Over C, the classification of smooth projective curves is the same as the classification of compact
Riemann surfaces [GAGA].

GAGA in general:

(1) An analytic subset of Pn is algebraic.
(2) Any map between analytic subsets of Pn is algebraic.

So the category of projective algebraic varieties over C is a full subcategory of the category of analytic
varieties over C (those that embed into Pn).

In fact: compact analytic manifolds do not necessarily have a lot of rational (meromorphic) functions,
but smooth algebraic varieties do (as many algebraically independent ones as as the dimension+1).

22.1. Surfaces.

Example. Birational but not biregular smooth projecutve surfaces:

(1) P2 and P1 × P1. They are birational since they both contain A1 × A1 = A2. They are not biregular
since any two curves in P2 meet, but two curves in P1 × P1 can not intersect. More explicitly,
P2−curve is affine, but P1 × P1 − {∞} × P1 = A1 × P1 is neither affine nor projective.

Let us look more closely at the birationl map between P2 and P1×P1. We have (x : y : z)→ ((x : y), (x : z)).
This is regular on P2 − {(0 : 1 : 0), (0 : 0 : 1)} → P1 × P1.

The inverse map is ((x0 : x1), (y0 : y1))→ (x0y0 : x1y0 : x0y1)), which is regular on P1×P1−{((0 : 1), (0 : 1))}.
Notice this is like the Segre embedding with one component missing, so we are taking P1 × P1 Segre→ P3 pro-
jected on P2.

Note that the map from P2 to P1 × P1 contracts the entire line (0 : ∗ : ∗) to ((0 : 1), (0 : 1)). Similarly, the
map from P1 × P1 → P2 contracts the lines {(0 : 1)} × P1 and P1 × {(0 : 1)} through that point contract to
two points on the line.

So the rational map P2 rational−→ P1 × P1 blows up the two points and contracts (blows down) the line
through them.

22.2. Blow-up of affine space. What is a blow-up (σ-process, monoidal transform).

Example (Key example). The blow-up of A2 at 0.

Consider A2 rational−→ P1 which sends (x, y) → (x : y). Take the graph of this (rational) map: by definition
the closure of the graph of its restriction to A2 − {0}.

So we start with Γ ⊂ (A2 − {0}) × P1 which is closed and is isomorphic to A2 − {0} by the vertical line
test (π1).

Define X = Γ̄ ⊂ A2−P1. Then X = Γ∪{0}×P1. One can say this is a graph of a multi-valued function.
This is a variety, and it has a projection onto A2 (see the cover of Shafarevich).

This is called the B|0A2, the blow-up centered at 0, and C = {0}×P1 ⊂ X is called the exceptional curve.
In fact we have C =lines in T0A2.
The blow-up map σ is regular, birationl and is an isomorphism σ : X − C → A2 − {0}.
Another description of X: pairs {(point in A2, line through 0 and this point)}.
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In coordinates: A2 × P1 = {((x, y), (z0 : z1))}. Then X is given by z1x = z0y. On one of the charts
A1 ⊂ P1, use z = z1

z0
as a non-homogenenous coordinate, and so inside the affine chart A2 × A1 = A3, we

have X is given by zx = y.
So A3 ∩X ∼= A2 with coordinates (x, z) and σ|X∩A3 : A2 → A2 sends (x, z) → (x, xz). In particular, we

see that X is smooth.

Versions of this: Take x ∈ P2 and B|xP2 is the graph of projection P2 rational−→ P1.
Similarly, we can define B|xPn or B|xAn, and in both cases we get a smooth variety, with exceptional

locus is going to be Pn−1. Note that B|xPn is projective.

22.3. Blow-up in general.

Definition. Suppose X is either affine or projective, take x ∈ X. Then define B|xX = X̃ by embedding
X ↪→ An or Pn and taking its blow-up:

If X ⊂ An with x = 0. Then we have a blow-up B|0An → An which is an isomorphism over An − 0. So

set X̃ = ¯σ−1(X − {0}) =graph of projection X
rational−→ Pn−1.

Example. Let X =nodal cubic, zero-locus of y2 − (x3 − x2)), with characteristic not 2.
In coordinates, on one of the charts of the blow-up A3 ⊂ A2 × P1 with coordinates (x, y, z) we have

B0A2 ∩A3 ∼= A2 with coordiantes (x, z). So now σ−1(X)∩A3 is given by plugging in y = xz in the defining
equation, i.e. V ((xz)2 − (x3 + x2)) = V (x2(z2 − x− 1)).

σ−1(X) has two components: C, the exception curve, and the proper preimage X̃, which is give on one
chart by z2 = x+ 1. This new curve is simpler in the sense that it is smooth.

In fact, any curve can be desingularized by successive blow-ups at the singular points.

23. November 20

Question (from student): why would we want to desingularize curves? Desingularizing the cuspidal cubic,
we get Ox,X → Ox̃,X̃ . The latter after completing might look like k[[t]], while the the completion of the

former ring may look like {f ∈ k[[t]] : f ′(0) = 0}.

Example. For the cuspidal case, the ring would look like {(f1, f2)|f1(0) = f2(0)} ⊂ k[[t1]]× k[[t2]]...

Remark. Embedded resolution of singularities: consider a curver X ⊂ A2 singular at 0; blowing up at 0
to obtain B|0A2, we will get a blow-up of the curve tagnent to the exceptional curve. This simplifies the
picture, even if there are more curves involved.

This is trying to resolve “a divisor with normal cosets”.

23.1. Blow-ups in general. Last time: we defined precisely the blow-up of An at 0 as the graph of

An rational−→ Pn−1 which is regular outisde the origin, so B|0An ⊂ An × Pn−1. We have a map π1 = σ : B|0An,
which is bjiective outside 0, while σ−1(0) ∼= Pn−1.

The real picture is using spherial coordinates: we have Rn ← Sn−1 × R≥0. In the complex world this
cannot be done with a sphere; it must be done with projective space.

For 0 ∈ X ⊂ An, we set B|0X = ¯σ−1(X − {0}) =proper preimage of X under σ. By definition this is
contained in B|0An.

Equivalently: B|0X =graph of X
rational−→ Pn−1 where Pn−1 is givn by (z1, z2, . . . , zn) where zi are the

coordinates on An ⊃ X. It is only important that the common zero locus of zi is the 0: result will be the
same for any collection of functions satisfying that property.

More explcitly: assume X is affine, with 0 ∈ X. Then take any set f1, . . . , fn ∈ k[X] such that I0 =

{f1, . . . , fn}. Then B|0X =graph of X
rational−→ Pn−1 given by f = (f1 : . . . : fn). By construction this lives

insode X × Pn−1.

Exercise. This does not depend (up to isomorphism) on the choice of fi’s.

“Now I think I actually talked myself into a corner.” (regarding an error earlier)

Remark (Generalization). Suppose f1, . . . , fn ∈ k[X] are such that IY = (f1, . . . , fn). Then the graph of
(f1 : . . . : fn) is B|YX =blow-up along Y .
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Definition. We can now define B|X for any variety X at 0 ∈ X by taking an affine U 3 x, so that
X = U ∪ (X − {0}) glued along U − {0}, then B|0X = B|0U ∪ (X − {0}) glued along U − {0}.

Similarly, given X ⊃ Y where Y is closed and X is an arbitrary variety, then we can define B|YX as the
gluing of B|Y ∩UU for affine charts U ⊂ X.

Proposition (Main Properties of Blow-ups).

(1) Blow-up of a projective variety is projective.
(2) Blow-up of a smooth variety along a smooth locus is smooth.

Remark (Analaytically). The blow-up of a smooth X along a smooth Y looks as follows: σ−1(Y ) locally
looks like Y × Pk−1 where k = codimY . In fact, σ−1(y) ∼= Pk−1-projective space of normal directions to Y
(quotient of tangent space of X by tangent space of Y ).

23.2. Applications of blow-up. We can resolve singularities.

Theorem (Hironaka’s Theorem). In characterstic 0, singular projective X can be desingularized by a se-
quence of blow-ups (not just at points).

This is a hard theorem.
Back to the difference between birational and biregular classification. (Sufrace, dim = 2). Any surface

(by Hironaka’s theorem) has a smooth projective model, but how many modeles are there?
Fact: Any birational map between smooth projective surfaces is a sequence of blow-ups [at single points]

and blow-downs).

Example. P2 rational−→ P1×P1 is a composition of blow-ups at two points and contraction(blow-down) of line
joining them.

Remark. The fact is more useful once we know which curves can be contracted. The answer is Castelnuovo’s
criterion: A curve C on a smooth (projective) surface S can be contracted if and only if C ∼= P1, and its
self-intersection is −1. E.g. C is rigid: unique curve in its cohomological class H2(S,Z) (analytically)...

Definition. A minimal model of surface is a model with no exceptional curves.

A minimal model is unique up to isomorphism except for certain speical (well-understood) cases (surfaces
isomorphic to P1×curve).

In higher codimension: take X a 3-fold, then we can have a flop between two models X ′ and X ′′ that are
blow-downs of X. If we blow-down both of those we can get a minimal singular model.

24. November 27

New stuff!

24.1. Divisors. Let X be a smooth variety (smoothness is a bit of an overkill; normal varieties will suffice).
Recall that if X is smooth, then for any point x ∈ X, Ox,X is a UFD. So if f ∈ Ox,X − {0}, then we

can write it f =
∏
gnii where gi ∈ Ox,X are primes and ni ≥ 0, so locally V (gi) = Zi is an irreducible

hypersurface passing through this point. The geometric meaning is that ni is the order of zero of f along
Zi.

If f ∈ k(X)− {0}, we can do the same thing, but now the ni can be negative, so if ni < 0 we say that f
has a pole or order −ni along Zi.

Definition. A prime divisor on X is a codimension 1 irreducible closed subvariety.

We can restate all this so it does not depend on the particular point.

Definition. A local equation of a prime divisor Z is g ∈ k[U ] for some open affine U ⊂ X such taht U∩Z 6= ∅
and 〈g〉 = I(Z ∩ U) ⊂ k[U ].

If g ∈ k[U ] and g′ ∈ k[U ′] are two local equations for Z (on different opens, possibly), then we can take
affine open U ′′ ⊂ U∩U ′ such that U ′′∩Z 6= ∅; then for g|U ′′ and g′|U ′ , g = g′h for a regular h : U ′′ → A1−{0}.

Note: if X is separated (actually a variety), then U ∩ U ′ is automatically affine.
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Definition. Suppose f ∈ k(X) is a rational function (assume X is irreducible for simplicity’s sake; since X
is smooth its connected components are the irreducible pieces). Then f has neither zero nor pole along a
prime divisor Zi if both f and f−1 are regular somewhere on Z.

Otherwise, ordz f = n means
f

gn
has neither zeros or poles along Z (where g is a local equation for Z).

We say that n =order of zero of f along Z, and −n =order of pole of f along Z. The choice of g as a local
equation of Z does not matter.

Finally, ordz 0 = +∞.

Algebraically, OZ,X = {f ∈ k(X)|f is regular somewhere on Z}. Then ordz f = 0 if and only if f has
neither zero nor pole, i.e. f ∈ OZ,X is a unit. Now, OZ,X is local, so its maximal ideal m consists of functions
that are {f : f |Z = 0 ∈ k(Z)}. This is true always.

For the special case where Z is a hypersurface in a smooth variety X, then g ∈ k(X) is a local equation
of Z if and only if g ∈ OZ,X and 〈g〉 = m. Hence, OZ,X is a DVR, and ordZ is the valuation.

Example. If X =smooth curve, then Z =point, and the local ring of a point in a smooth curve is a DVR.

Remark. If X =affine, then I(Z) ⊂ k[X] is a prime ideal, and OZ,X is then exactly the localization k[X]I(Z).

Proposition. The order satisfies the following properties.

(1) ordZ(f1 · f2) = ordZ f1 + ordZ f2
(2) ordZ(f1 + f2) ≥ min{ordZ f1, ordZ f2}

Fix f ∈ k(X)−{0}. Then f is regular on some U ⊂ X. We could have prime divisors in the complement
of U . But for any prime divisor Z such that Z ∩ U 6= ∅, ordZ f ≥ 0. Dually, f−1 will be regular on some
V ⊂ X, and for any Z such that Z ∩ V 6= ∅, ordZ f ≤ 0.

Hence: ordZ f 6= 0 for all but finitely many Z (there are only finitely many Z outside of U ∩ V ?).

Definition. A divisor on X is an element of the free abelian group DivX =
⊕

Z⊂X Z · Z.

Example. When X =curve, D =
∑
nixi is a finite sum of points xi ∈ X.

Definition. Given f ∈ k(X)− {0}, its divisor is (f) =
∑

(ordZ f) · Z ∈ DivX. In fact, f → (f) is a group
homomorphism k(X)× → DivX.

By definition, D =
∑
niZi ≥ 0 if all ni ≥ 0, in which case we say D is effective.

Example. Suppose f ∈ k(X)×, and (f) ≥ 0. We want to show that if f has no poles along any prime
divisor, then f : X → A1 is regular.

This is so because the complement of the domain of regularity of f has to have codimension 2, hence f
can be extended because X is smooth.

Corollary. (f) = 0 implies (f) ≥ 0 and −(f) ≥ 0, but then −(f) = (f−1) ≥ 0, so both f and f−1 are
regular on all of X, so f : X → A1 − {0}.
Definition. For f ∈ k(X)×, we can let (f)0 =

∑
ordZ f≥0 ordZ fZ and (f)∞ =

∑
ordZ f≤0(− ordZ f)Z ≥ 0,

so (f) = (f)0 − (f)∞. (f)0 is the divisor of zeroes and (f)∞ is the divisor of poles.

Lemma. The domain of regularity of f is precisely X −
⋃
UZ⊂X,ordZ f<0Z.

Remark. We needed two things about X:

(1) Any prime divisor has a local equation
(2) The ability to extend regular functions across codimension 2 subsets of any open in X.

These hold on normal varieties (the geometric counterpart of integrally closed ring; this includes some
singular varieties).

But the theory with normal varieties have some displeasing features:
If X is singular, then this notion of divisors (Weil divisors) is in some ways not as good as another notion

(Cartier divisors).
The idea behind Cartier divisors: we give a notion of what it means for two functions to locally have the

same kind of singularities. Local singularities are going to be recorded as (Ui ⊂ X, fi ∈ k(Ui)
×). Concretely,

we take a family (Ui, fi ∈ k(Ui)
×) with

⋃
Ui = X and

fi
fj

has neither zeroes nor poles on Ui ∩ Uj .

This is an explcit way to describe global sections of the sheaf k(X)×/O×X .
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25. November 29

Last time: we talked about divisors. If X is smooth, then DivX = {
∑
niZi : ni ∈ Z, Zi ⊂ X irreducible

closed hypersurface}.
We have f → (f) =

∑
(ordZ f)Z, which is a group homomorphism k(X)× → DivX.

Example. (f) = 0 if and only if f : X → A1 − {0}, i.e. f ∈ Γ(X,O)× (ring of globally defined functions,
its units in particular)

There are two classes of questions:

• “Multiplicative”: Is there a function f with exactly these zeroes/poles?
• ”Additive”: Is there f with zeroes/poles no worse than given.

25.1. Multiplicative question.

Definition. A divisor is principal if D = (f).
We let PicX = DivX/{(f) : f ∈ k(X)×} be the divisor class group/Picard group; two divisors with

[D1] = [D2] (if and only if D1 −D2 = (f)), we say are rationally equivalent.

Example.
(1) X = A1. Then DivX 3

∑
nixi, with xi ∈ A1. All of these are principal (

∏
(x−xi)ni), so PicA1 = 0

(2) X = An, then DivX =
∑
niZi. Each Zi = (fi) where 〈fi〉 = I(Zi). Principal divisors form a

subgroup and contain the generators, so again PicAn = 0.
(3) U = A1 − {0}. Again, PicA1 − {0} = 0 since PicA1 = 0.

This is one way. More formally: we have a surjective restriction map DivX → DivU (a hyper-
surface in X intersects to get a hypersurface in U). The kernel is precisely divisors in X − U . It
sends principal divisors to principal divisors, so induces a surjection PicX → PicU , so PicU = 0.

A second way: the only way we needed to prove that PicAn = 0 was unique factorization in
k[An]. So k[U ] = k[x, x−1] which is also a UFD.

Proposition. If X is affine (and smooth), then k[X] a UFD implies PicX = 0. In fact, this is an if and
only if.

Proof. Exercise. �

Example. Example continued.

(4) Pic(A2 − {0} = 0 by being the quotient of Pic(A2). Generally, if U ⊂ X is open and codimension
X − U is at least 2, then the restriction map is an isomorphism because no divisors can hide in the

complement of U . So DivX
∼=→ DivU and induces PicX

∼=→ PicU , as D on X is princial if and only
if D|U is principal.

Another way to say this is that k(X)× → DivX → PicX → 0 and k(X)× → DivU → PicU → 0,
and the restriction map which is an isomorphism of the first two, must be then an isomorphism of
the third.

Example. Zi = V (fi) for unique irreducible homogeneous fi. We want to take
∏
fnii , which makes sense

as a ratioanl function if (and only if)
∑
ni deg(fi) = 0. So this is the only obstruction to a divisor being

principal.

Remark (Notation). degZi = deg fi for I(Zi) = 〈fi〉. Then deg
∑
niZi =

∑
ni degZi. Then we have

DivPn deg→ Z, and its kernel is precisely all principal divisors, so in fact PicPn ∼= Z. degree 0.

Anoter way: we can find a rational function with prescribed zeroes and poles on An ⊂ Pn. Then the
complement is precisely one hypersurface, and on it the poles and zeroes either match or they do not. The
difference is exactly the degree of the divisor.

Topologically: if X is projective and smooth over C, then Z ⊂ X is closed of real dimension 2n − 2 if
dimX = n. So it defines [Z] ∈ H2n−2(X,Z). Can use Poincare duality to consider [Z] ∈ H2(X,Z) (the
latter will be defined even if X were not projective). Then we get a map DivX → H2(X,Z).

Claim: DivX → H2(X,Z) factors through PicX, inducing c1 : PicX → H2(X,Z). Application:

PicPn c1→ H2(Pn,Z), both are Z. “Proof” of claim: Suppose f ∈ k(X)× − k. Then we want to con-
sider f : X → P1, but this is not regular everywhere, but it is regular outside of codimension 2, so we
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consider : X − (codim2) → P1. Then [(f)0] = f∗([0]) where [0] ∈ H2(P1,Z). Similarly, [(f)1] = f∗([∞])
with [∞] ∈ H2(P1,Z). Hence, [(f)] = 0 as the difference of the two points vanishes.

25.2. Local-to-global approach to divisors. Note: locally, every divisor is principal: given D ∈ DivX,
there is an X =

⋃
i Ui such that D|Ui = (fi) for fi ∈ k(Ui)

×. This relies on UFD in Ox,X , which fails for
general normal varieties.

Conversely, given X =
⋃
Ui and fi ∈ k(Ui)

×, we can reconstruct D, provided that (fi) ∈ DivUi and
(fj) ∈ DivUj agree on Ui ∩ Uj (i.e. Divisor groups Div(U) for U ⊂ X form a sheaf).

Explcitly, we need
fi
fj

= gij ∈ Γ(Ui ∩ Uj ;O)×.

D is principal if there exist φi’s with φi ∈ Γ(Ui,O)× such that
fi
φi

=
fj
φj

, this is if and only if gij =
φi
φj

.

But each (gij) is a 1-Cech cocycle, and the divisor will be principle if and only if (gij) is a coboundary.

Theorem. DivX → H1(X,O×). This induces an isomorphism from PicX to H1(X,O×).

Sketch of proof. The map is well-defined. If we change fi’s to fiψi, then the Cech cocylce does not change.
The map is bijective since given gij we can construct fi by taking f1 = 1 on some open set, and then

fi = gi1f1. �

In a fancier way 1→ O× → K× is a map fo invertible sheaf of regular functions to the sheaf of invertiable
rational functions=constant sheaf. Easy exercise: in Zariski topology, Cech cohomology of a constant sheaf
is trivial.

We can complete to a short exact sequence 1 → O× → K× → K×/O× → 1, gives us a long exact
sequence in cohomology Γ(X,K×) → Γ(X,K×/O×) → H1(X,O×) → H1(X,K×) = 0 and this is exactly
k(X)× → DivX → PicX → 0.

26. December 4

Last time: X =smooth irreducible, we defined PicX = DivX/{(f) : f ∈ k(X)}. Then PicX ∼=
H1(X,OxX) – first Cech cohomology on the sheaf of invertible regular functions.

Remark. Suppose X =smooth over C. Last time, we talked about c1 : PicX → H2(X,Z). This can be
explained as follows.

Consider the sheaf OXan =sheaf of holomorphic functions. Then OXan =sheaf of holomoprhic functions
without zeroes.

There is a map H1(X,OxX)→ H1(X,OxXan). (GAGA states that this is an isomorphism if X is project-
tive).

Analytically, consider 0→ Z 2πi→ OXan
exp→ OxXan → 1.

This gives

H1(X,OxXan) // H2(X,Z)

H1(X,OxX)

OO
c1

77

26.1. Divisors vs ideals. Suppose X =affine and f ∈ k[X] − {0}. Then we have 0 ≤ (f) ∈ DivX and
〈f〉 ⊂ k[X]. Both of these record the zeroes of f with multiplicity. This is not surprising as both are
determined up to scalar by f .

Now, let us extend to effective divisors that are not necessarily principal. Given 0 ≤ D ∈ DivX, consider
D 7→ I(D) = I ⊂ k[X] given by I = {g : (g) ≥ D}. If f ∈ k[X], then (f) 7→ 〈f〉 = k[X] · f . This boils down
to the fact that f divides g if and only if (f) ≤ (g).

Claim: this is a bijection between Div≥0X = {D : D ≥ 0} and locally principal ideals I ⊂ k[X].

Definition. I is locally principal if (either of the following equivalent conditions holds):

(1) For any x ∈ X there is f ∈ k[X], f(x) 6= 0 such that I · k[X]f ⊂ k[X]f is principal.
(2) For any x ∈ X, I · Ox,X ⊂ Ox,X is principal.
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The inverse map to Div≥0X → {g : (g) ≥ D} can be constructed by inf{(f) : f ∈ I}. Actually, we have
a more general claim:

There is a bijection DivX →locally principal fractions ideals for k[X].

Definition. A fractional ideal is a finitely generated k[X]-submodule in k(X), so I =

〈
f1
g1
, . . . ,

fn
gn

〉
⊂

1

g1 . . . gn
k[X].

Remark.

(1) The advantage to fractional ideals is that we get an actual group. The group law in DivX corresponds
to the product operation on fractional ideals.

(2) Suppose that D1 and D2 are rationally equivalent., i.e. D1 = D2 + (f). Then I(D1) = I(D2) · 〈f〉 =
I(D2) · f .

In particular, I(D1) ∼= I(D2) as k[X]-modules. Conversely, any isomorphism of fractional ideals
is of this form.

Proof.

I1 //

��

I2

��

k(X) = I1 ⊗ k(X) // I2 ⊗ k(X) = k(X)

�

Theorem. PicX =isomorphism classes of finitely generated k[X]-modules that are locally free of rank 1.

Sktech of proof. We only need to show that a rank 1 locally free finitely generated module M is isomorphic

to a fractional ideal. The proof is simialr as before: M
i→ M ⊗ k(X) and M ⊗ k(X) ∼= k(X) because it

is a vector space of dimension 1. We must check that the first map is injective, but this is just chasing
localizations.

Concretely i is injective because it is injective locally. More precisely we have the following two equivalent
formulations:

(1) Let R be a commutative ring, and φ : M → N is a map of R-modules, and that g1, . . . , gn ∈ R
generate 〈g1, . . . , gn〉 = 1. Consider φgi : Mgi → Ngi . Then φ is injective if and only if φgi is
injective. φ

(2) Consider, for any prime ideal p ⊂ R, φp : Mp → Np. Then φ is injective if and only if φp is injective
for all p.

(3) If R is a finitely generated algebra over a field (maybe just Noetherian), and M and N are finitely
generated module, then φ is injective if and only if φm is injective for all maximal m.

�

Exercise. The group law in PicX corresponds to the tensor product of modules.

Sometimes instead of “locally free of rank 1” some people say “invertible module” since a finitely generated
module M is locally free of rank 1 if and only if there exists N such that N ⊗M = k[X].

Remark. If X is not affine, we have to consider shaves of (fractional) ideals, or sheaves of modules, over
OX , i.e. sheaves of OX -modules.

26.2. Divisors and line bundles. There are bijections:

PicX // H1(X,OxX)

ss

Isomorphisms classes of line bundles on X

Definition. An algebraic vector bundle E on a variety X is:

• A variety E equipped with a regular map p : E → X
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• The structure of a vector space over k on p−1(x) for all x ∈ X
such that there is a cover X =

⋃
Ui and isomorphisms p−1(Ui) ∼= Ui × An agreeing with all the data.

Explicitly: E is glued from p−1(Ui) = Ui × An. For any i, j we have two maps βi : p
−1(Ui ∩ Uj) →

(Ui ∩ Uj)× An and βj : p−1(Ui ∩ Uj)→ (Ui ∩ Uj)× An.

Thus the transition map βj ◦ β−1i has to be regular, has to agree with π1, i.e. the map looks like
(x, v) 7→ (x, φ(v, x)), and has to agree with the structure of a vector space, φ(v, c) has to be linear in v so it
looks like an invertible n× n matrix with elements regular functions on X.

27. December 6

27.1. (Algebraic) vector bundles. Last time: an algebraic vector bundle is p : E → X such that p is
regular, p−1(x) has the structure of a vector space so that E is locally trivial over X, i.e. locally it looks like

U × An
∼= //

π1

��

p−1(U)

p

yy
U

Here n = rk(E), is the rank of E.
Explicitly, if E over X is given by open sets

⋃
Ui = X its rank n, and transition functions: invertible n×n

matrices γij ∈ Gl(n,Γ(Ui ∩Uj ,O)) where Γ(Ui ∩Uj ,O) are regular functions on Ui ∩Uj . The compatibility
requirement is γijγjk = γik on Ui ∩ Uj ∩ Uk.

Example.

(0) Trivial bundle X × An
(1) Tautological vector bundle over Gr(k, n) given by E = {(v, V ) : v ∈ V }. Here rkE = k.

E.g. E → Pn, and E =Blow-up of An+1.
(2) Take X =smooth. Then we have E = TX =tangent bundle which is TX =

⋃
x∈X TxX. We need

to make TX into a variety. A system of local parameters give basis of this space over each point,
and also around that point. So if ti’s are local parameters on U , then p−1(U) = TU ∼= U ×An with
(u, ξ) 7→ (u, 〈ξ, dti(u)〉i=1,...,n).

T ∗X =cotangent bunlde can be defined
⊔
x∈X T

∗
xX. This is a general construction: given p : E →

X, we can define its dual p : E∗ → X as follows: E∗ =
⊔
x∈X(Ex)∗ where Ex =fiber. Locally,

E ∼= An × U , so E∗ ∼= (An)∗ × U (we should check this is indepdenent of the trivializations).
If E is given by γij ∈ GL(n,Γ(Ui ∩ Uj ,O)), then the transition functions for E∗ are going to be

(γtij)
−1. Note that inversion is fine because we have Ui ∩ Uj

γij→ GL(n)
A7→A−1

→ GL(n) since GL(n) is

k[GL(n)] = k[entries, det−1].

This also works for: E1 → X, E2 → X give us E1 ⊕ E2, E1 ⊗ E2, E⊗k1 , ΛkE1, SymkE. . .

E.g. Ek is given by γ
(k)
ij for k = 1, 2. Then E1 ⊕ E2 is going to be given by

(
γ
(1)
ij 0

0 γ
(2)
ij

)
.

27.2. Sections of a vector bundle. Vector bundles form a category.

Definition. A section is a regular map s : X → E such that p ◦ s = id.

Example. If E = An ×X, then s =n-tuple of regular functions. So s(x) = Ex depending regularly on x.

Example.

(1) Sections of the tangent bundle TX are regular vector fields.
(2) Sections of the cotangent bunlde T ∗X are (regular) differential 1-forms.

Sections of ΛkT ∗X are (regular) differential k-forms.
(3) Consider

U × An
∼= //

π1

��

p−1(U)

p

yy
U
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There are standard sections U → An×U given by ei : U → (ei, u). So a trivialization of p−1(U)→
U is the same (gives rise to) a basis of sections e1, . . . , en : U → p−1(U) that gives a basis in any

fiber. Conversely, such a basis determines a trivialization p−1(U)
∼=→ An × U .

What do sections on of a vector bundle on X form? Clearly (must check algebraic dependence, but that’s
easy) they form a vector space. Moreover, we can take linear comibnations of sections with coefficients in
Γ(X,O). This gives us a module Γ(X,E) = {sections s : X → E} over Γ(X,O).

Example. If E is trivial, then Γ(X,E) is a trivial module (of the same rank).

Assume that X is affine. Then:

(1) For any vector bundle E → X, Γ(X,E) is a finitely generated module that is locally free (need to
show: if U = X − V (f), then Γ(U,E) = Γ(X,E)f = Γ(X,E)⊗k[X]k[U ])

(2) This is an equivalence of categories (between vector bundles over X and finitely generated locally
free k[X]-modules).

Remark. If X is not affine, we still have the fact, but we have to work with sheavevs of sections, which are
sheaves of modules over the structure sheaf of algebras.

27.3. Line bundles and divisors. Tkae X =smooth.

Theorem. Line bundles up to isomorphism are in bijection with PicX.

Concretely:

L. bundles
∼= //

γij
''

PicX

∼=xx

H1(X,OxX)

The transition functions γij for a line bundle L form a 1-cocycle.
Another formula for correspondence: line bundles→ PicX. Suppose we have p : L → X. Locally, over

U ⊂ X we have L is trivial, and hence we can choose a s : U → L with no zeroes. This is a “rational section”
of L over X. To such s we associate its divisor (s) (this is a local construction).

Any other rational section is of the form f · S with f ∈ k(X), so (fs) = (s) + (f), so the image of (s) in
PicX is independent of s. This gives the correspondence from line bundles to PicX.

Example. L =tautolocial bundle on P1. So fiber over a point (x0 : x1) ∈ P1 is k · (x0 : x1) ⊂ k2. Consider

the section (1,
x1
x0

) is regular away from ∞ and has a first-order pole at ∞, no other zeroes or poles. So its

divisor class is [−∞] ∈ PicP1.

28. December 11

28.1. Line bundles continued. Last time: X =smooth irreducible variety, and line bundles on X up to
isomorphism∼= PicX. Explicitly, both correspond to H1(X,OxX).

The more direct way of constructing this correspondence is the following. Given a line bundle L on X,
take a rational function s : (s) ∈ DivX. The image of (s) in PicX is indepenent of the choice of s (depends
only on L).

Example. P1 has a tautological line bundle L: over each (x0 : x1) associate the line k · (x0 : x1) ⊂ k. So we

can choose a section by (1:
x1
x0

) over each (x0 : x1). This rational sections has a single pole, so its divisor is

−[point] ∈ PicP1 for some point in P1.
For Pn, the tautological line bunlde corresponds to −[H] ∈ PicPn where H ⊂ Pn is a hyperplane.

Example. Take P1 and consider (L∗)⊗d.
A fiber over (x0 : x1) is a homogeneous degree d forms on k · (x0 : x1).
Sections of this line bundle are degree d homogeneous functions in x0, x1. Take any degree d homogeneous

polynomial in x0, x1. It is a section of this line bundle, with no poles, but it will have d zeroes (counted
with multiplicity).

The divisor class is d · [pt] ∈ PicP1.
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Remark. Group operations on line bundles: ⊗ is the group law, and L 7→ L∗ is the inversion.

Example. Consider the tangent bunlde TP1. This is a line bundle.
What is the number of zeroes and poles of a vector field on P1?

Well, if z is a coordinate on A1 = P1−{∞}, then
d

dz
has no zeroes or poles on A1. What happens at ∞?

Let ζ =
1

z
. Then

dz

dz

d

dz
=

d

dζ
. Then − 1

ζ2
d

dz
=

d

dζ
.

Hence,
d

dz
= −ζ2 d

dz
. So the image of TP1 in PicX is 2[point].

For the cotangent bundle, T ∗P1, we get −2[point].

Remark (Notation). K =“canonical divisor”=“divisor of the canonical line bundle” (more precisely, “canon-
ical class”) ΛdimX(T ∗X).

28.2. Linear systems.

Definition. For a divisor D on X, L(D) = {f ∈ k(X) : (f) + D ≥ 0, i.e. (f) ≥ −D}. L(D) is a vector
space, and we are interested in its dimension l(d) = dimL(D).

Example. Let X = A1. Then D =
∑
nixi. E.g. if D = −pt, then (f) ≥pt ammounts to saying

L(D) = {regular functions vanishing at that point}. Hence, l(D) =∞ since in this case L(D) = (x−pt)·k[X].
In fact l(D) is infinite, for any affine X with dimX > 0.

Example. X = P1, let D = k·pt, k ∈ Z (think of pt=∞).
Think of A1 = P1−{∞} with z =coordinate on A1. Then L(D) = {p ∈ k[z] : deg(p) ≤ k}. So l(D) = 1+k

for k ≥ 0 and 0 otherwise.

Example. Find the dimension of {regular vector fields on P1}. Claim: that space is isomorphic to L(D)
where D is the divisor of a (rational) vector field τ on P1.

Proof. Consider τ , D = (τ). Other rational vector fields are k(X) · τ . Then f · τ is regular if and only if
0 ≤ (f · τ) = (f) +D.

So the dimension is 3 with basis
d

dz
, z

d

dz
and z2

d

dz
. �

Proposition. L(D) ∼=Space of global sections of the corresponding line bundle (LD).

Remark. IF D1 D2, then L(D1) ∼= L(D2). If D1 = (g) +D2, then f 7→ g · f .

28.3. The Riemann-Roch Theorem. The Riemann-Roch Theorem gives a “kind of” an answer to the
question l(D) =? if X is a projective curve.

From now on, assume that X =smooth projective curve (also irreducible).

Definition. The degree of a divisor
∑
nixi is

∑
ni.

Proposition. For any f ∈ k(X)×, deg(f) = 0. This is the same as saying that the number of preimages of
0 with multiplicity equals the number of preimages of ∞ with multiplicity.

Corollary. deg : DivX → Z factors through PicX.

Theorem (Riemann-Roch). For any D ∈ DivX:

l(D)− l(K −D) = l − g + deg(D)

for a constant g ≥ 0 depending on X. (Only [D] ∈ PicX matters)

Remark. g is the (algebraic) genus of X.

Example. D = 0. Then l(0)− l(K) = 1−g+deg(0). Then l(0) = 1 since there are only constant functions a
projective variety. Then l(K) = dim{global regular 1-forms on X}. Then deg(0) = 0 and so g = dim{global
regular 1-forms on X}.

Over C, g =topological genus.

Example. D = K. Then l(K)− l(0) = 1− g + degK, so degK = 2g − 2. On P1, g = 0.
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29. December 13

Last lecture: Riemann-Roch Theorem and Beyond!
Last time: X =smooth projective irreducible. Consider D ∈ DivX, and L(D) = {f ∈ k(X) : (f) + D ≥

0} =global sections of the corresponding line bundles. l(D) = dimL(D).

Example. X = Pn, and let D = d ·H where H =hyperplane at infinity= Pn−1 = Pn − An.
Then L(D) = {polynomials in n variables of degree at most d}.
On the other hand, this is the same as sections of (L∗)⊗d where L is the tautological line bundle; these

sections are degree d homogeneous polynomials in n+ 1 variables.

Classically: replace f by (f) +D = D̃: f is determined by its divisor up to a nowhere vanishing regular
functio, which on Pn is up to multiplicative constant.

Now D̃ must be ≥ 0 (effective), and it must be rationally equivalent to D (D̃−D = (f)). In the example,
we consider the space of degree d hypersurfaces(=effective divisors) in Pn where we think of Pn as projecitve
space of lines in L(D).

So classically, the problem for degree 2, for example, is considering the family of all quadrics in P2, which
is called a linear system in P2.

29.1. Riemann-Roch Theorem. Suppose X =curve. Then:

Theorem.
l(D)− l(K −D) = degD + 1− g

where 0 ≤ g = g(x) =genus of X.

Using the formula:

(1) g = l(K) = dim(global 1-forms on X)
(2) degK = 2g − 2
(3) Riemann obtained the inequality l(D) ≥ degD + 1− g.
(4) deg(f) = 0, so deg(D+(f)) = degD. If degD < 0, then D+(f) 6≥ 0 (if f 6= 0). Hence, if degD < 0,

then l(D) = 0.
(5) If degD > 2g − 2 = degK, then deg(K −D) < 0, so l(D) = degD + 1− g.

These give a nice graph of l(D) vs. degD, which is a horizontal line at 0 until degD = −1, and a slope
1-line out of (2g − 1, g), and the inequality being things above the line and inside the square (0, 0) to (0, g)
to (2g − 1, g) to (2g − 1, 0).

Proposition. l(D) <∞ for all D.

Proof. If degD < 0, then l(D) = 0. Let us show that l(D) ≤ l(D + x) ≤ l(D) + 1.
Note that L(D) ⊂ L(D+x). SO we need to show that dim(L(D+x)/L(X)) ≤ 1. Suppose D = n·x+other

points. Then f ∈ L(D + x) can have pole of order n+ 1 at x, as opposed to f ∈ L(D) which can have pole
of order n at x at most n. If t is a local coordinate at x, then f = an−1 · t−n−1+lower order terms. Then f
belongs to L(D) if and only if a−n−1 = 0. So a−n−1 is a functional on L(D+x), and L(D) is the kernel. �

Note that this argument can be extended to any projectuve X and any divisor.
Now our diagram is restricted to the l(D) vs. degD relationship to a parallelogram.

Proof revisited. Set O(D) = OX(D) to be the sheaf of functions f such that (f) +D ≥ 0. This is the same
as the sheaf of sections of the corresponding line bundle. Then O(D) ⊂ O(D + x) (subsheaf). So we have a
short exact sequence of sheaves:

0 // O(D) // O(D + x) // O(D + x)/O(D) // 0

Then F = O(D+ x)/O(D) is a sky-scraper sheaf: its stalk at x is 1-dimensional, and all other stalks are
trivial.

Then we have a long exact sequence of cohomology:

0 // Γ(X,O(D)) // Γ(X,O(D + x)) // Γ(X,F )

The first two non-trivial parts are L(D) and L(D + x). �
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29.2. “Proof” of Riemann-Roch Theorem.

Theorem. Hi(X,O(D)) =


L(D) = Γ(X,O(D)) i = 0

L(K −D)∗ i = 1

0 i > 1

So l(D)− l(K −D) = χ(OD) =Euler characteristic
∑
i(−1)i dimHi(X,O(D)).

Hence, χ(O(D + x)) = χ(O(D)) + χ(F ). But χ(F ) = 1 because Hi(X,F ) = 0. So in fact it equals
χ(O(D)) + 1.

Hence ,χ(O(D)) = χ(O) + degD, and this is the Riemann-Roch theorem.

29.3. Beyond curves. Assume X =projective of dimension d. Let E be a vector bundle on X. We want to
look at Hi(X,E) (look at the sheaf of sections of E, locally free sheaf of X). The following are counterparts
to the revisited proof.

Theorem (Grothendieck-Serre vanishing). dimHi(X,E) = 0 for i > dimX.

Theorem (Serre’s finiteness theorem). dimHi(X,E) <∞.

Theorem (Serre’s Duality). Hi(X,E) = Hd−i(X,E∗ ⊗ ΛdT ∗X)∗

Theorem (Riemann-Roch-. . . ). χ(E) = dim
∑

(−1)i dimHi(X,E) =degree d polynoimal in E. In fact,
threre is a closed formula...

29.4. Applications of Riemann-Roch. Suppose X =projective curve

Example. Suppose g = 0. Then l(D) = degD + 1− g for degD > 2g − 2 = −2.
So L(0) is 1-dimensional, so is just k.
L(point) gives dim 2, so there is a new function f ∈ L(point). This function is a regular map f : XtøP1,

and it is easy to see that f is an isomorphism. So the only curve of genus 0 is the projective line.

Example. Conside g = 1. Then l(D) deg(D) provided deg(D) > 0.
Then L(0) = k is of dimension 1.
Then L(x) has dimension 1, so L(x) = L(0) = k.
On the other hand, L(2x) has dimension 2, so there is a new function f : X → P1 which will be a double

cover of P1 (this is the Weierstrass function).
For L(3x) has dimension 3, so we have a new function g = f ′.
Then for L(4x) 3 f2, and L(5x) 3 fg, while L(6x) 3 f3, g2, but dimension is 7, so f and g satisfy a cubic

relation.

Now, X

(f,g)
rational−→ Y ⊂ A2 where Y is a cubic. In fact, we have X → Ȳ ⊂ P2, so any X is a (smooth) plane

cubic. If Ȳ was singular, X would be its resolution of singularities, but that would have genus 0.


