
Math 763.
The Nullstellensatz.

The goal of this note is to prove Hilbert’s Nullstellensatz (which translates
as Zero Locus Theorem). There are many different proofs, my goal here is to
give a short relatively self-contained proof (without relying on, for instance,
Noether’s Normalization).

1. The statement(s)

The following statements can all be considered versions of the Nullstel-
lensatz (The references are to Milne’s notes):

Theorem 1 (The Nullstellensatz, Theorem 2.11). Suppose k is algebraically
closed. For any ideal J ⊂ k[x1, . . . , xn],

I(V (J)) =
√
J.

(Note that the inclusion I(V (J)) ⊃
√
J is obvious.)

Theorem 2 (‘Weak Nullstellensatz’, Theorem 2.6). Suppose k is alge-
braically closed. If J ⊂ k[x1, . . . , xn] has no common solutions (that is,
V (J) = ∅), then J = (1).

Proposition 3. Any maximal ideal in k[x1, . . . , xn] is of the form

ma = (x− a1, . . . , x− an)

= ker(eva : k[x1, . . . , xn]→ k : f(x1, . . . , xn) 7→ f(a1, . . . , an))

for some a = (a1, . . . , an) ∈ kn.

Lemma 4 (Algebraic Nullstellensatz=Zariski’s Lemma, Lemma 2.7). Let
L ⊃ k be a field extension. Suppose that L is finitely generated as a k
algebra. Then L is a finite extension.

2. The proof of the Algebraic Nullstellensatz

Suppose

L = k(x1, . . . , xd)

is a transcendental extension of k that is finitely generated as a k-algebra.
Let us arrive at a contradiction.

Example. For instance: the field of rational functions k(z) is a transcendental
extension of k. We claim that it is not a f.g. k-algebra. This is reasonably
clear: no finite collection of rational functions Pi(z)/Qi(z) can generate
k(z). Indeed, consider the algebra A ⊂ k(z) generated by Pi(z)/Qi(z). The
denominator of any g ∈ A is of the form

∏
Qi(z)N , so only finitely many

irreducible polynomials are allowed in the denominator. However, there are
infinitely many irreducible polynomials in k[z] (is it clear why?), so A ( k(z).
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Without losing generality, we may assume that L is finite over k(x1),
otherwise, replace k with k(x1) and keep going.

Since L is finite over k(x1) but transcendental over k, x1 must be tran-
scendental over k. We therefore have to prove a generalization of the above
example:

Let L be a finite extension of the field of rational functions k(z) (where
z = x1). Then L is not a f.g. k-algebra.

Let e1, . . . , ed be a k(z)-basis of L. We can completely describe L by
structure constants (‘multiplication table’)

ei · ej =
∑

ckij(z)ek ckij(z) ∈ k(z).

If x1, . . . , xn is a set of elements of L, we can write them in the basis as

xi =
∑

f j
i (z)ej f j

i (z) ∈ k(z).

Now it is clear that if A is the k-algebra generated by x′is, then for any
element

g =
∑

gi(z)ei ∈ A gi(z) ∈ k(z),

the denominators of gi’s are products of denominators of ckij ’s and f j
i ’s. Thus,

only finitely many irreducible polynomials may appear in the denominators,
and we see that A ( L, as claimed. �

3. More proofs

Let us now derive the remaining statements.

Proof of Proposition 3. Clearly, ideals ma are maximal (being the kernels
of surjective maps onto k). Conversely, let m be any maximal ideal. By
Lemma 4, k[x1, . . . , xn]/m is identified with k as a k-algebra. Hence, m is
the kernel of a homomorphism of k-algebras

k[x1, . . . , xn] 7→ k[x1, . . . , xn]/m = k.

However, any such homomorphism is an evaluation map. �

Proof of Theorem 2. In fact, the theorem is equivalent to Proposition 3.
Indeed,

V (J) = {a ∈ kn : ma ⊃ J},
so V (J) = ∅ iff J is not contained in any ideal ma. On the other hand,
J = (1) iff J is not contained in any maximal ideal. �

Proof of Theorem 1. Clearly, the Weak Nullstellensatz is a special case of
the Nullstellensatz. However, it also implies the Nullstellensatz via the so-
called Rabinowitsch Trick.

Suppose F (x1, . . . , xn) ∈ k[x1, . . . , xn] satisfies f |V (J) = 0, and let us show

that F k = 0 for some k. Add an extra variable x0 and consider the system



of equations in x0, . . . , xn of the form{
f(x1, . . . , xn) = 0, f ∈ J

x0F (x1, . . . , xn)− 1 = 0.

(It is enough to let f run over a set of generators of J only; by Hilbert’s Basis
Theorem, this means that we are basically looking at a finite system of equa-
tions... but this is irrelevant here.) This system is incompatible: the first set
of equations says that (x1, . . . , xn) ∈ V (J), and hence F (x1, . . . , xn) = 0,
while the last equation says that x0 = 1/F (x1, . . . , xn). Hence the Weak
Nullstellensatz applies.

By the Weak Nullstellensatz, there is a linear combination

1 =
∑
i

gi(x0, . . . , xn)fi(x1, . . . , xn) + g(x0, . . . , xn)(x0F (x1, . . . , xn)− 1)

for some fi ∈ J and g, gi ∈ k[x0, . . . , xn]. Plug in x0 = 1/F in the field
k(x1, . . . , xn). We then get an identity in k(x1, . . . , xn) of the form

1 =
∑
i

gi(1/F, x1, . . . , xn)fi(x1, . . . , xn).

Now clear the denominators. �

4. Remarks

It is instructive to think about the Rabinowitsch trick purely algebraically.
The idea is to consider the expansion of the ideal J ⊂ k[x1, . . . , xn] to an
ideal in k[x1, . . . , xn, F

−1]. The condition that F |V (J) = 0 implies that this

expansion is the improper ideal (why?), which is equivalent to F ∈
√
J .

Note also that for tautological reasons,

I(V (J)) =
⋂

a:ma⊃J
ma,

which thanks to Proposition 3 is the same as

I(V (J)) =
⋂

m is maximal,m⊃J
m.

The intersection
J ′ :=

⋂
m is maximal,m⊃J

m

is basically the Jacobson radical of J . ‘Basically’ here refers to a termino-
logical issue: usually, we talk about the Jacobson radical of a ring, but not
of an ideal. It is more precise to say that J ′ is the preimage of Jacobson’s
radical of k[x1, . . . , xn]/J under the projection

(5) k[x1, . . . , xn]→ k[x1, . . . , xn]/J.

On the other hand, √
J =

⋂
p is prime,p⊃J

p



is the preimage of the nilradical under (5). Thus, modulo Proposition 3,
the Nullstellensatz is the claim that the two radicals of k[x1, . . . , xn]/J co-
incide. Since any finitely-generated k algebra is of this form, we arrive at
the following claim.

Proposition 6. For any finitely generated k-algebra, the nilradical and Ja-
cobson’s radical coincide. �

I am tempted to call Proposition 6 ‘Rabinowitsch’s Theorem’, because
this is essentially the algebraic version of what Rabinowitsch’s Trick proves.

Exercise 7. Show that Proposition 6 holds even if k is not algebraically
closed. (The same argument works.)

(Commutative) rings A whose nilradical is equal to Jacobson’s radical are
called Jacobson rings (a.k.a Hilbert rings). There is a generalized way of
looking at the Nullstellensatz as follows:

Theorem 8. Suppose A is a commutative Jacobson ring. Then any finitely
generated A-algebra B is a Jacobson ring as well. Moreover, for any maxi-
mal ideal J ⊂ B, the pullback of J to A is a maximal ideal I ⊂ A, and B/J
is a finite extension of A/I.

However, the proof of Theorem 8 is a bit more technical.


