Putnam Club Problem Sheet - February 14

Warm-up

Putnam 2006 A1. Find the volume of the region of points (x, y, z) such that

$$
\left(x^{2}+y^{2}+z^{2}+8\right)^{2} \leq 36\left(x^{2}+y^{2}\right) .
$$

Putnam 2010 A3. Suppose that the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$
h(x, y)=a \frac{\partial h}{\partial x}(x, y)+b \frac{\partial h}{\partial y}(x, y)
$$

for some constants a, b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all $(x, y) \in \mathbb{R}^{2}$, then h is identically zero.

Putnam 2004 B3. Determine all real numbers $a>0$ for which there exists a nonnegative continuous function $f(x)$ defined on $[0, a]$ with the property that the region

$$
R=\{(x, y) ; 0 \leq x \leq a, 0 \leq y \leq f(x)\}
$$

has perimeter k units and area k square units for some real number k.

Harder Problems

Putnam 2011 A5. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable functions with the following properties:

- $F(u, u)=0$ for every $u \in \mathbb{R}$;
- for every $x \in \mathbb{R}, g(x)>0$ and $x^{2} g(x) \leq 1$;
- for every $(u, v) \in \mathbb{R}^{2}$, the vector $\nabla F(u, v)$ is either $\mathbf{0}$ or parallel to the vector $\langle g(u),-g(v)\rangle$.
Prove that there exists a constant C such that for every $n \geq 2$ and any $x_{1}, \ldots, x_{n+1} \in \mathbb{R}$, we have

$$
\min _{i \neq j}\left|F\left(x_{i}, x_{j}\right)\right| \leq \frac{C}{n}
$$

Putnam 2004 A6. Suppose that $f(x, y)$ is a continuous real-valued function on the unit square $0 \leq x \leq 1,0 \leq y \leq 1$. Show that
$\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right)^{2} d y+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x \leq\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1}[f(x, y)]^{2} d x d y$.
Putnam 2009 A6. Let $f:[0,1]^{2} \rightarrow \mathbb{R}$ be a continuous function on the closed unit square such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on the interior $(0,1)^{2}$. Let $a=\int_{0}^{1} f(0, y) d y$, $b=\int_{0}^{1} f(1, y) d y, c=\int_{0}^{1} f(x, 0) d x, d=\int_{0}^{1} f(x, 1) d x$. Prove or disprove: There must be a point $\left(x_{0}, y_{0}\right)$ in $(0,1)^{2}$ such that

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=b-a \quad \text { and } \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=d-c
$$

Putnam 2018 B5. Let $f=\left(f_{1}, f_{2}\right)$ be a function from \mathbb{R}^{2} to \mathbb{R}^{2} with continuous partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ that are positive everywhere. Suppose that

$$
\frac{\partial f_{1}}{\partial x_{1}} \frac{\partial f_{2}}{\partial x_{2}}-\frac{1}{4}\left(\frac{\partial f_{1}}{\partial x_{2}}+\frac{\partial f_{2}}{\partial x_{1}}\right)^{2}>0
$$

everywhere. Prove that f is one-to-one.

Two Devilish Problems

Putnam 2012 A6. Let $f(x, y)$ be a continuous, real-valued function on \mathbb{R}^{2}. Suppose that, for every rectangular region R of area 1 , the double integral of $f(x, y)$ over R equals 0 . Must $f(x, y)$ be identically 0 ?
Putnam 2003 B6. Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that

$$
\int_{0}^{1} \int_{0}^{1}|f(x)+f(y)| d x d y \geq \int_{0}^{1}|f(x)| d x
$$

