Putnam Club Problem Sheet - February 21
 Warm-up

Putnam 2005 B1. Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a. (Note: $\lfloor\nu\rfloor$ is the greatest integer less than or equal to ν.)

Putnam 2007 B1. Let f be a nonconstant polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$.

Putnam 2018 B2. Let n be a positive integer, and let $f_{n}(z)=n+(n-1) z+(n-2) z^{2}+\cdots+z^{n-1}$. Prove that f_{n} has no roots in the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.

Harder

Putnam 2005 A3. Let $p(z)$ be a polynomial of degree n all of whose zeros have absolute value 1 in the complex plane. Put $g(z)=p(z) / z^{n / 2}$. Show that all zeros of $g^{\prime}(z)=0$ have absolute value 1.

Putnam 2007 B4. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$
(P(X))^{2}+(Q(X))^{2}=X^{2 n}+1
$$

and $\operatorname{deg} P>\operatorname{deg} Q$.
Putnam 2010 B4. Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which

$$
p(x) q(x+1)-p(x+1) q(x)=1 .
$$

Devilish

Putnam 2007 B5. Let k be a positive integer. Prove that there exist polynomials $P_{0}(n), P_{1}(n), \ldots, P_{k-1}(n)$ (which may depend on k) such that for any integer n,

$$
\left\lfloor\frac{n}{k}\right\rfloor^{k}=P_{0}(n)+P_{1}(n)\left\lfloor\frac{n}{k}\right\rfloor+\cdots+P_{k-1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k-1} .
$$

$(\lfloor a\rfloor$ means the largest integer $\leq a$.)
Putnam 2005 B5. Let $P\left(x_{1}, \ldots, x_{n}\right)$ denote a polynomial with real coefficients in the variables x_{1}, \ldots, x_{n}, and suppose that

$$
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) P\left(x_{1}, \ldots, x_{n}\right)=0 \quad \text { (identically) }
$$

and that

$$
x_{1}^{2}+\cdots+x_{n}^{2} \text { divides } P\left(x_{1}, \ldots, x_{n}\right)
$$

Show that $P=0$ identically.
Putnam 2008 A5. Let $n \geq 3$ be an integer. Let $f(x)$ and $g(x)$ be polynomials with real coefficients such that the points $(f(1), g(1)),(f(2), g(2)), \ldots,(f(n), g(n))$ in \mathbb{R}^{2} are the vertices of a regular n-gon in counterclockwise order. Prove that at least one of $f(x)$ and $g(x)$ has degree greater than or equal to $n-1$.

