SEQUENCES AND RECURRENCES (03/13/24)

1. (1994-A1) Suppose that a sequence

$$
a_{1}, a_{2}, a_{3}, \ldots
$$

satisfies

$$
0<a_{n} \leq a_{2 n}+a_{2 n+1}
$$

for all $n \geq 1$. Prove that the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

diverges.
2. (1992-A1) Prove that

$$
f(n)=1-n
$$

is the only integer-valued function defined on the integers that satisfies the following conditions:
(1) $f(f(n))=n$ for all integers n;
(2) $f(f(n+2)+2)=n$ for all integers n;
(3) $f(0)=1$.
3. (Bratislava Correspondence Seminar, 1999) Let F_{n} be the Fibonacci numbers, so that $F_{1}=F_{2}=1$ and $F_{k+1}=F_{k}+F_{k-1}$. Suppose $P(x)$ is a polynomial of degree 998 such that $P(n)=F_{n}$ for $n=1000, \ldots, 1998$. Show that $P(1999)=F(1999)-1$.
4. (Leningrad Math Olympiad 1989, Grade 10) A sequence of real numbers a_{1}, a_{2}, \ldots has the property that

$$
\left|a_{m}+a_{n}-a_{m+n}\right| \leq \frac{1}{m+n}
$$

for all m and n. Prove that the sequence is an arithmetic progression.
5. (1998-A4) Let $A_{1}=0$ and $A_{2}=1$. For $n>2$, the number A_{n} is defined by concatenating the decimal expansions of A_{n-1} and A_{n-2} from left to right. For example, $A_{3}=A_{2} A_{1}=10, A_{4}=A_{3} A_{2}=101, A_{5}=A_{4} A_{3}=10110$, and so forth. Determine all n such that 11 divides A_{n}.
6. (2001-B3) For any positive integer n let $\langle n\rangle$ denote the closest integer to \sqrt{n}. Evaluate

$$
\sum_{n=1}^{\infty} \frac{2^{\langle n\rangle}+2^{-\langle n\rangle}}{2^{n}}
$$

7. (2002-A5) Define a sequence by $a_{0}=1$, together with the rules $a_{2 n+1}=a_{n}$ and $a_{2 n+2}=a_{n}+a_{n+1}$ for each integer $n \geq 0$. Prove that every positive rational number appears in the set

$$
\left\{\frac{a_{n-1}}{a_{n}}: n \geq 0\right\}=\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \ldots\right\}
$$

8. (1993-A6) The infinite sequence of 2's and 3 's

$$
2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2, \ldots
$$

has the property that, if one forms a second sequence that records the number of 3 's between successive 2's, the result is identical to the given sequence. Show that there exists a real number r such that, for any n, the nth term of the sequence is 2 if and only if $n=1+\lfloor r m\rfloor$ for some nonnegative integer m.
(Side comment: what happens for other numbers in place of 2 and 3?)

