POLYNOMIALS

1. a, b, and c are the three roots of the polynomial $x^{3}-3 x^{2}+1$. Find $a^{3}+b^{3}+c^{3}$.
2. (AIME 1989) Assume that $x_{1}, x_{2}, \ldots, x_{7}$ are real numbers such that

$$
\begin{aligned}
x_{1}+4 x_{2}+9 x_{3}+16 x_{4}+25 x_{5}+36 x_{6}+49 x_{7} & =1 \\
4 x_{1}+9 x_{2}+16 x_{3}+25 x_{4}+36 x_{5}+49 x_{6}+64 x_{7} & =12 \\
9 x_{1}+16 x_{2}+25 x_{3}+36 x_{4}+49 x_{5}+64 x_{6}+81 x_{7} & =123 .
\end{aligned}
$$

Find the value of

$$
16 x_{1}+25 x_{2}+36 x_{3}+49 x_{4}+64 x_{5}+81 x_{6}+100 x_{7} .
$$

3. (1999-A1, leftover from last time) Find polynomials $f(x), g(x)$, and $h(x)$, if they exist, such that for all x,

$$
|f(x)|-|g(x)|+h(x)= \begin{cases}-1 & \text { if } x<-1 \\ 3 x+2 & \text { if }-1 \leq x \leq 0 \\ -2 x+2 & \text { if } x>0\end{cases}
$$

4. (2007-B1) Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$.
5. (2016-A1) Find the smallest positive integer j such that for every polynomial $p(x)$ with integer coefficients and for every integer k, the integer

$$
p^{(j)}(k)=\left.\frac{d^{j} p(x)}{d x^{j}}\right|_{x=k}
$$

(the j-th derivative of $p(x)$ at k) is divisible by 2016 .
6. (1999-A2) Show that for some fixed positive n we can express every polynomial with real coefficients which is nowhere negative as a sum of the squares of n polynomials.

Harder

7. (2007-B4) Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$
(P(x))^{2}+(Q(x))^{2}=X^{2 n}+1
$$

and $\operatorname{deg} P>\operatorname{deg} Q$.
8. (2007-B5). Let k be a positive integer. Prove that there exist polynomials $P_{0}(n), P_{1}(n), \ldots, P_{k-1}(n)$ such that, for any integer n,

$$
\left\lfloor\frac{n}{k}\right\rfloor^{k}=P_{0}(n)+P_{1}(n)\left\lfloor\frac{n}{k}\right\rfloor+\cdots+P_{k-1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k-1} .
$$

Good things to know

- The Fundamental Theorem of Algebra.
- Expressions for coefficients in terms of roots (as elementary symmetric polynomials).
- Roots of real polynomials (must occur in conjugate pairs).
- Intermediate Value Theorem.
- Mean Value Theorem: For a real-valued function, the derivative must vanish between two zeros of the function.
- Divisibility: for an integer polynomial $p(x),(a-b) \mid(p(a)-p(b))$.

Hints

1. Express $a^{3}+b^{3}+c^{3}$ in terms of $(a+b+c),(a b+a c+b c)$, and $a b c$.
2. The left-hand sides are values of a (low-degree!) polynomial.
3. At each point where the formula for the function changes, what is the difference between the formulas on the two sides?
4. Compare $f(f(n)+1)$ and $f(1)$.
5. $2016=2^{5} \times 3^{2} \times 7$.
6. What does the factorization of such a polynomial look like?
7. This is related to the previous problem. Write $P^{2}+Q^{2}=(P+i Q)(P-i Q)$.
8. Consider the difference $\left\{\frac{n}{k}\right\}=\frac{n}{k}-\left\lfloor\frac{n}{k}\right\rfloor$; it only takes k distinct values. Rewrite both sides in terms of n and $\left\{\frac{n}{k}\right\}$.
