1. Find the limit:
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3. Let ay,...,a, be a finite sequence of real numbers. Show that there exists

m,0 < m < n such that

2. Find the limit:
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(For m = 0 the first sum is zero and for m = n the second sum is zero.)

4. Let {ap};_, and {br};_; be sequences of real numbers. Let {a;};_, and
{br}7_; be non-decreasing rearrangements of these sequences and let {a,}}_; and
{br}}_; be non-increasing rearrangements of these sequences. Prove that

n n n
dei)k < Zakbk < de[;k-
k=1 k=1 k=1

5. Let a, be a sequence of positive numbers monotonically decreasing to zero.
Show that if Y a, = +oo then Y min(a,, +) = +o0.

6. Let py = 2,po = 3,p3 = 5,... be the sequence of all prime numbers in
increasing order. Prove that

1\ ! 1\ ! 1N P
(1——) (1——) (1——) >y -
P P2 Pn ~k
7. With p,, the same as above, prove that
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8. Prove that the series
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converges.



