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Inequalities

Wednesday, October 2th, 2019

We now focus on understanding inequalities for integrals. I will list some of the
well-known facts and then I will go ahead and propose some interesting problems that
you might enjoy. I do think that trying to solve the problems yourself and handing the
solutions to the instructor will help you gain some experience in terms of olympiads type
competitions.

Facts:

• Let f : [a, b]→ R be a nonnegative continuous function, then∫ b

a

f(x) dx ≥ 0,

with equality if and only if f is identically equal to zero.

• The Cauchy-Schwartz inequality. Let f and g be square integrable functions. The
the following inequality holds(∫

D

f(x)g(x) dx

)2

≤
(∫

D

f(x) dx

)(∫
D

g(x) dx

)
,

where D is a “nice” domain (there are no holes and the boundary is smooth).

• Minkowski’s inequality. It p¿1, then the following inequality holds, provided f and
g are continuous functions(∫

D

|f(x) + g(x)|p dx
) 1

p

≤
(∫

D

|f(x)|p dx
) 1

p

+

(∫
D

|g(x)|p dx
) 1

p

.

Here we also assume that D is a “nice” domain (there are no holes and the bound-
ary is smooth).

• Hölder’s inequality. If p, q > 1 are such that 1/p+ 1/q = 1 then∫
D

|f(x)g(x)| dx ≤
(∫

D

|f(x)|p dx
) 1

p
(∫

D

|g(x)|p dx
) 1

q

.

Same assumptions on D.



• Generalized Hölder’s inequality. Assume that r ∈ (0,∞] and p1, · · · pn ∈ (0,∞]
such that

n∑
k=1

1

pk
=

1

r
,

(where we interpret 1/∞ as 0 in this equation). Then, for all measurable real- or
complex-valued functions f1, · · · , fn defined on D,∥∥∥∥∥

n∏
k=1

fk

∥∥∥∥∥
r

≤
n∏
k=1

‖fk‖pk

(where we interpret any product with a factor of∞ as∞ if all factors are positive,
but the product is 0 if any factor is 0).

In particular,

fk ∈ Lpk(µ) ∀k ∈ {1, . . . , n} =⇒
n∏
k=1

fk ∈ Lr(µ).

• Chebyshev’s inequality. Let f and g be two increasing functions on R. Then for
any real numbers a < b,

(b− a)

∫ b

a

f(x)g(x) dx ≥
(∫ b

a

f(x) dx

)(∫ b

a

g(x) dx

)
.

Here are the problems we did in class. for now I will not include the solutions but if
you need them, please let me know and I will add them:

1. Find all continuous functions f : [0, 1]→ R satisfying∫ 1

0

f(x) dx =
1

3
+

∫ (
f(x2)

)2
dx.

2. Determine all continuous functions f : [0, 1]→ R that satisfy∫ 1

0

f(x(x− f(x))) dx =
1

12
.

3. Let f : [0, 1]→ R be a continuous function such that∫ 1

0

f(x) dx =

∫ 1

0

xf(x) dx = 1.

Prove that ∫ 1

0

(f(x))2 ≥ 4.



4. Let f : [0,∞)→ [0,∞) be a continuous, strictly increasing function with f(0) = 0.
Prove that ∫ a

0

f(x) dx+

∫ b

0

f−1(x) dx ≥ ab

for all positive numbers a and b, with equality if and only if b = f(a). Here f−1

denotes the inverse of the function f .

5. Let f : [0, 1]→ [0,∞) be a differentiable function with decreasing first derivative,
and such that f(0) = 0, and f ′(0) > 0. Prove that∫ 1

0

dx

f 2(x) + 1
≤ f(1)

f ′(1)
.

Can equality hold?

Proposed problems for October 9th meeting

1. Prove that any continuous differentiable function f : [a, b]→ R for which f(a) = 0
satisfies the inequality∫ b

a

(f(x))2 dx ≤ (b− a)2
∫ b

a

(f ′(x))
2
dx.

2. Let f(x) be a continuous real-valued function defined on the interval [0, 1]. Show
that ∫ 1

0

∫ 1

0

|f(x) + f(y)| dxdy ≥
∫ 1

0

|f(x)| dx.

3. Let f be a nonincreasing function on the interval [0, 1]. Prove that for any α ∈
(0, 1),

α

∫ 1

0

f(x) dx ≤
∫ α

0

f(x) dx.

4. Prove that for any positive real numbers x, y and any positive integers m, n

(n−1)(m−1)
(
xm+n + ym+n

)
+(m+n−1)(m−1) (xmyn + xnym) ≥ mn(m−1)

(
xm+n−1y + ym+n−1x

)
.

5. Find the maximal values of the ratio(∫ 3

0

f(x) dx

)3

/

∫ 3

0

(f()x)3 dx,

as f ranges over all positive continuous functions on [0, 1].

6. Find all differentiable functions f : (0,∞) → (0,∞) for which there is a positive
real number a such that

f ′
(a
x

)
=

x

f(x)

for all x > 0.


