NUMBER THEORY (11/16/22)

Warm-up

If these are too easy, try thinking about possible other approaches to the problems.

1. Let \((x, y, z)\) be a solution to \(x^2 + y^2 = z^2\). Show that one of the three numbers is divisible (a) by 3 (b) by 4 (c) by 5.

2. The next to last digit of \(3^n\) is even.

3. Show that for every \(n\), \(n\) does not divide \(2^n - 1\).

4. For any \(n\), \(2^n\) does not divide \(n!\). (Extra question: can you find all \(n\) such that \(2^{n-1}\) divides \(n!\))

Actual competition problems

5. (2006-A3) Let \(1, 2, 3, \ldots, 2005, 2006, 2007, 2009, 2012, 2016, \ldots\) be a sequence defined by \(x_k = k\) for \(k = 1, \ldots, 2006\) and \(x_{k+1} = x_k + x_{k-2005}\) for \(k \geq 2006\). Show that the sequence has 2005 consecutive terms each divisible by 2006.

6. (2005-A1) Show that every positive integer \(n\) is a sum of one or more numbers of the form \(2^r \cdot 3^s\), where \(r\) and \(s\) are non-negative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)

7. (2014-B3) Let \(A\) be an \(m \times n\) matrix with rational entries. Suppose that there are at least \(m + n\) distinct prime numbers among the absolute values of the entries of \(A\). Show that the rank of \(A\) is at least 2.

8. (2013-A2) Let \(S\) be the set of all positive integers that are not perfect squares. For \(n\) in \(S\), consider choices of integers \(a_1, a_2, \ldots, a_r\) such that

\[
n < a_1 < a_2 < \cdots < a_r
\]

and \(n \cdot a_1 \cdot a_2 \cdots a_r\) is a perfect square, and let \(f(n)\) be the minimum of \(a_r\) over all such choices. For example, \(2 \cdot 3 \cdot 6\) is a perfect square, while \(2 \cdot 3, 2 \cdot 4, 2 \cdot 5, 2 \cdot 3 \cdot 4, 2 \cdot 3 \cdot 5, 2 \cdot 4 \cdot 5,\) and \(2 \cdot 3 \cdot 4 \cdot 5\) are not, and so \(f(2) = 6\).

Show that the function \(f\) from \(S\) onto the integers is one-one (injective).

9. (1997-B5) Define \(d(n)\) for \(n \geq 0\) recursively by \(d(0) = 1, d(n) = 2^{d(n-1)}\). Show that for every \(n \geq 2\),

\[
d(n) \equiv d(n - 1) \mod n.
\]
A few important facts from number theory

Standard Conventions. \(a|b\) means ‘\(a\) divides \(b\)’, \(a \equiv b \mod n\) means ‘\(a\) is congruent to \(b\) modulo \(n\)’, that is, \(n|(a-b)\) (or equivalently, \(a\) and \(b\) have the same remainder when divided by \(n\)).

Fermat’s Little Theorem. If \(a\) is not divisible by a prime \(p\), then \(a^{p-1} \equiv 1 \mod p\). (Version: for any \(a\) and any prime \(p\), \(a^p \equiv a \mod p\).)

Euler’s Theorem. For any number \(n\), let \(\phi(n)\) be the number of integers between 1 and \(n\) that are coprime to \(n\). Then for any \(a\) that is coprime to \(n\), \(a^{\phi(n)} \equiv 1 \mod n\).

Suppose a rational number \(b/c\) is a solution of the polynomial equation \(a_n x^n + \cdots + a_0 = 0\) whose coefficients are integers. Then \(b|a_0\) and \(c|a_n\), assuming \(b/c\) is reduced.

A number \(n \geq 1\) can be written as a sum of two squares if and only if every prime \(p\) of the form \(4k + 3\) appears in the prime factorization of \(n\) an even number of times.