NUMBER THEORY (11/30/22)

WARM-UP

If these are too easy, try thinking about possible other approaches to the problems.

1. Let (x, y, z) be a solution to $x^2 + y^2 = z^2$. Show that one of the three numbers is divisible (a) by 3 (b) by 4 (c) by 5.

2. The next to last digit of 3^n is even.

3. Show that for every n, n does not divide $2^n - 1$.

4. For any n, 2^n does not divide n!. (Extra question: can you find all n such that 2^{n-1} divides n!)

ACTUAL COMPETITION PROBLEMS

5. (2006-A3) Let $1, 2, 3, \ldots, 2005, 2006, 2007, 2009, 2012, 2016, \ldots$ be a sequence defined by $x_k = k$ for $k = 1, \ldots, 2006$ and $x_{k+1} = x_k + x_{k-2005}$ for $k \ge 2006$. Show that the sequence has 2005 consecutive terms each divisible by 2006.

6. (2005-A1) Show that every positive integer n is a sum of one or more numbers of the form $2^r 3^s$, where r and s are non-negative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)

7. (2014-B3) Let A be an $m \times n$ matrix with rational entries. Suppose that there are at least m + n distinct prime numbers among the absolute values of the entries of A. Show that the rank of A is at least 2.

8. (2013-A2) Let S be the set of all positive integers that are not perfect squares. For n in S, consider choices of integers a_1, a_2, \ldots, a_r such that

$$n < a_1 < a_2 < \dots < a_r$$

and $n \cdot a_1 \cdot a_2 \cdots a_r$ is a perfect square, and let f(n) be the minimum of a_r over all such choices. For example, $2 \cdot 3 \cdot 6$ is a perfect square, while $2 \cdot 3$, $2 \cdot 4$, $2 \cdot 5$, $2 \cdot 3 \cdot 4$, $2 \cdot 3 \cdot 5$, $2 \cdot 4 \cdot 5$, and $2 \cdot 3 \cdot 4 \cdot 5$ are not, and so f(2) = 6. Show that the function f from S onto the integers is one-one (injective).

9. (1997-B5) Define d(n) for $n \ge 0$ recursively by d(0) = 1, $d(n) = 2^{d(n-1)}$. Show that for every $n \ge 2$,

$$d(n) \equiv d(n-1) \mod n.$$

10. (VT 2011, #4). Let m, n be positive integers and let [a] denote the residue class mod mn of the integer a (thus

 $\{[r]|r \text{ is an integer}\}$

has exactly mn elements). Suppose the set

 $\{[ar]|r \text{ is an integer}\}$

has exactly *m* elements. Prove that there is a positive integer *q* such that *q* is prime to mn and [nq] = [a].

11. (VT 2012, #4). Define f(n) for n a positive integer by

$$f(1) = 3$$
 and $f(n+1) = 3^{f(n)}$.

What are the last two digits of f(2012)?

12. (Putnam 2003, B3). Show that

$$\prod_{i=1}^{n} \operatorname{lcm}(1, 2, 3, \dots, [n/i]) = n!$$

13. (Putnam 2000, A6). p(x) is a polynomial with integer coefficients. A sequence x_0, x_1, x_2, \ldots is defined by

$$x_0 = 0, \quad x_{n+1} = p(x_n).$$

Prove that if $x_n = 0$ for some n > 0, then $x_1 = 0$ or $x_2 = 0$.

A FEW IMPORTANT FACTS FROM NUMBER THEORY

Standard Conventions. a|b means 'a divides b', $a \equiv b \mod n$ means 'a is congruent to b modulo n, that is, n|(a - b) (or equivalently, a and b have the same remainder when divided by n).

Fermat's Little Theorem. If a is not divisible by a prime p, then $a^{p-1} \equiv 1 \mod p$. (Version: for any a and any prime p, $a^p \equiv a \mod p$.)

Euler's Theorem. For any number n, let $\phi(n)$ be the number of integers between 1 and n that are coprime to n. Then for any a that is coprime to n, $a^{\phi}(n) \equiv 1 \mod n$.

Suppose a rational number b/c is a solution of the polynomial equation $a_n x^n + \cdots + a_0 = 0$ whose coefficients are integers. Then $b|a_0$ and $c|a_n$, assuming b/c is reduced.

A number $n \ge 1$ can be written as a sum of two squares if and only if every prime p of the form 4k + 3 appears in the prime factorization of n an even number of times.