Number theory problems

September 23, 2025

Problems

- 1. (Putnam 2021 A1) How many positive integers N satisfy all of the following three conditions?
 - (a) N is divisible by 2020.
 - (b) N has at most 2020 decimal digits.
 - (c) The decimal digits of N are a string of consecutive ones followed by a string of consecutive zeros.
- 2. (Putnam 1975 A1) A triangular number is a positive integer of the form n(n+1)/2. Show that m is a sum of two triangular numbers iff 4m + 1 is a sum of two squares.
- 3. Let $a_n = 10 + n^2$ for $n \ge 1$. For each n, let d_n denote the gcd of a_n and a_{n+1} . Find the maximum value of d_n as n ranges through the positive integers.
- 4. (Putnam 1988 B1) If n > 3 is not prime, show that we can find positive integers a, b, c, such that n = ab + bc + ca + 1.
- 5. (Putnam 2024 A1) Determine all positive integers n for which there exist positive integers a, b, and c satisfying

$$2a^n + 3b^n = 4c^n.$$

- 6. Prove that for any integer n > 1, $n^4 + 4^n$ is not a prime number.
- 7. (Putnam 2019 A1) Determine all possible values of the expression

$$A^3 + B^3 + C^3 - 3ABC$$
.

where A, B, and C are nonnegative integers.

8. Prove that the equation

$$x^2 + y^2 + z^2 + 3(x + y + z) + 5 = 0$$

has no solutions in rational numbers.

- 9. (Putnam 2007 B1) Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then f(n) divides f(f(n) + 1) if and only if n = 1.
- 10. (Putnam 2003 B3) Show that for each positive integer n,

$$n! = \prod_{i=1}^{n} \operatorname{lcm}\left\{1, 2, \cdots, \lfloor \frac{n}{i} \rfloor\right\}.$$

1

Here lcm denotes the least common multiple.

11. (Thanks to Tomasz Sobkowicz-Oliveira) Let a, b be positive integers such that b > 1 and $a^2 + ab$ is the product of two consecutive integers. Prove that

$$b \ge 1 + \sqrt{4a + 1}$$

and find all such pairs (a, b) for which $b = 1 + \sqrt{4a + 1}$.

- 12. (Putnam 2015 A2) Let $a_0 = 1$, $a_1 = 2$, and $a_n = 4a_{n-1} a_{n-2}$ for $n \ge 2$. Find an odd prime factor of a_{2015} .
- 13. (Putnam 2013 A2) Let S be the set of all positive integers that are *not* perfect squares. For n in S, consider choices of integers a_1, a_2, \ldots, a_r such that $n < a_1 < a_2 < \cdots < a_r$ and $n \cdot a_1 \cdot a_2 \cdots a_r$ is a perfect square, and let f(n) be the minumum of a_r over all such choices. For example, $2 \cdot 3 \cdot 6$ is a perfect square, while $2 \cdot 3$, $2 \cdot 4$, $2 \cdot 5$, $2 \cdot 3 \cdot 4$, $2 \cdot 3 \cdot 5$, $2 \cdot 4 \cdot 5$, and $2 \cdot 3 \cdot 4 \cdot 5$ are not, and so f(2) = 6. Show that the function f from S to the integers is one-to-one.
- 14. (Putnam 2008 B4) Let p be a prime number. Let h(x) be a polynomial with integer coefficients such that $h(0), h(1), \ldots, h(p^2 1)$ are distinct modulo p^2 . Show that $h(0), h(1), \ldots, h(p^3 1)$ are distinct modulo p^3 .