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First, we review Cauchy’s definition of limit of a sequence.

Definition
• A sequence (xn) converges to a finite number L if for every ε > 0, there exists a positive

integer N such that for every n > N , |xn − L| < ε. This is denoted by limn→∞ xn = L.

• A sequence (xn) tends to infinity if for every every M > 0, there exists a positive integer
N such that for every n > N , xn > M . This is denoted by limn→∞ xn = +∞.

We also review some baisc theorems.

Theorem (The squeezing principle)
• If an ≤ bn ≤ cn for all n, and if limn→∞ an = limn→∞ cn = L, then limn→∞ = L.

• If an ≤ bn for all n, and if limn→∞ an = +∞, then limn→∞ bn = +∞.

Theorem (Weierstrass’ theorem)
A monotonic bounded sequence of real numbers is convergent.

Theorem (Cauchy’s criterion for convergence)
A sequence (xn) of points in Rn (or, in general, in a complete metric space) is convergent if and
only if any ε > 0, there is a positive integer N such that whenever m,n > N , |xm − xn| < ε.

The following theorem can be derived from Cauchy’s criterion for convergence.

Theorem
Let X be a closed subset of Rn (or, in general, in a complete metric space) and f : X → X a
function with the property that

||f(x)− f(y)|| ≤ c||x− y||

for any x, y ∈ X, where 0 < c < 1 is a constant. Then f has a unique fixed point in X.

Theorem (Cesàro mean)
Suppose (xn) is a converging sequence of real numbers with limit L. Then as n tens to infinity,
the limit of the average of the first n terms of (xn) is also equal to L. In other words,

lim
n→∞

1

n

∑
1≤i≤n

ai = L.

The following Cesàro–Stolz Theorem is a generalization of the above theorem, and it is the
sequence analog of the l’Hôpital’s rule.
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Theorem (The Cesàro–Stolz Theorem)
Let (xn) and (yn) be two sequences of real numbers with (yn) strictly positive, increasing and
unbounded. If

lim
n→∞

xn+1 − xn
yn+1 − yn

= L,

then the limit
lim
n→∞

xn
yn

exists and is equal to L.

Example 1
Let (an) be a decreasing sequence of positive numbers converging to 0. Prove that the seres

S = a1 − a2 + a3 − a4 + · · ·

is convergent.

Example 2
Prove that

1 +
√

5

2
= 1 +

1

1 + 1
1+ 1

1+ 1
1+···

.

Part of the problem is to give a precise interpretation of the right side of the equation.

Example 3
Prove the following identity of Ramanujan√

1 + 2

√
1 + 3

√
1 + 4

√
1 + · · · = 3.

Example 4
Let a0, b0, c0 be real numbers. Define the sequences (an), (bn), (cn) recursively by

an+1 =
an + bn

2
, bn+1 =

bn + cn
2

, cn+1 =
cn + an

2
.

Prove that the sequences are convergent and find their limits.

Example 5
Let p be a positive real number. Compute

lim
n→∞

1p + 2p + · · ·+ np

np+1
.

More exercises about limits of sequences.

1. Compute

lim
n→∞

∣∣∣sin(π√n2 + n+ 1
)∣∣∣ .

2. Prove that

lim
n→∞

n2
∫ 1

n

0
xx+1dx =

1

2
.

3. Prove that for n ≥ 2, the equation xn + x− 1 = 0 has a unique root in the interval [0, 1].
If xn denotes this root, prove that the sequence (xn) is convergent and find its limit.
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4. Prove that the sequence

an = 1 +
1

2
+

1

3
+ · · ·+ 1

n
− ln(n+ 1),

is convergent.

5. Let S = {x1, x2, . . . , xn, . . .} be the set of all positive integers that do not contain the digit
9 in their decimal representation. Prove that

∞∑
n=1

1

xn
< 80.

6. Let c and x0 be fixed positive numbers. Define the sequence (xn) recursively by

xn =
1

2

(
xn−1 +

c

xn−1

)
.

Prove that the sequence converges and that its limit is
√
c.

7. For an arbitrary number x0 ∈ (0, π) define recursively the sequence (xn) by xn+1 = sinxn.
Compute

lim
n→∞

√
nxn.

8. Prove that the number
∞∑
n=1

1

2n2

is irrational.
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