
HILBERT SCHEMES AND QUOT SCHEMES

KEVIN D.T. DAO

Abstract. Very sketchy notes for a talk on Hilbert Schemes and Quot schemes for the algebraic stacks
reading seminar.

1. The Quot and Hilbert Scheme

Let f : X → S be a finitely presented separated morphism of schemes, L on X an f -relatively ample line
bundle, and P ∈ Q[z] a polynomial, and F a quasicoherent locally finitely presented sheaf on X.

We define a functor

QuotP (F/X/S) : (Sch /S)op → Set sending S′ → S to




isomorphism classes of quotients of quasicoherent sheaves

FS′ ↠ G with G locally finitely presented
quasi-cohernet sheaf with proper
support over S′ and for all s′ ∈ S′,
the Hilbert polynomial of GXs′ is P .




Theorem 1.1. The functor QuotP (F/X/S) is represented by a scheme which is quasiprojective over S. It
is projective if X/S is proper.

Definition 1.2. When F = OX , we denote it by HilbPX/S and it is called the Hilbert scheme.

Example 1.3. We write out some examples and leave it as an exercise to check that these descriptions are
correct.

(1) Suppose X = S = Spec(C) and F = C̃n. If P (z) := k, then QuotP (F/X/S) = HilbPX/S is the
Grassmannian paramterizing k-dimensional subvector spaces of Cn. As one might guess from this,
the proof of Theorem 1.1. utilizes a generalization of the Grassmannian.

(2) The moduli of degree d curves in P2 appears as a Hilbert scheme. In particular,X = P2
C, S = Spec(C),

and one takes P (z) =
(
z+2
2

)
−
(
z−d
2

)
= 1

2 (z+2)(z+1)− 1
2 (z−d)(z−d−1) = (d+2)z+1− 1

2d−
1
2d

2.

Then HilbPP2
C/C

is the moduli of degree d curves in P2
C. One checks via the universal property that

this is a projective space of sufficiently large dimension.
(3) One can also consider instead the Hilbert scheme of points on some varieties. These alone are already

quite interesting. It is already a nice exercise to think about the Hilbert scheme of points for A2
C.

Here are the facts about them due to Forgarty, Briançon, and Göttsche.

Theorem 1.4. If S is smooth a quasiprojective surface over C, then Hilbn S, the Hilbert scheme of
n points is smooth irreducible of dimension 2n. The topological Euler characteristic has generating
function ∑

n≥0

χtop(Hilbn S)q
n =

∏
m≥0

1

(1− qm)χtop(X)
.

One of the main applications of the above theorem is showing that for integral locally planar
curves, the compactified Jacobian is irreducible with dimension g(C). One can find more in Dori
Bejleri’s lecture notes.

(4) Hartshorne’s book on Deformation Theory is all about the Hilbert scheme. It might be worthwhile
to peruse the book if one wants some more information.
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For an expository account of the quot scheme and its construction, I find Nitsin Nitsure’s notes here
helpful. The short summary is that (1) one makes a reduction to the case of projective space (you’d need
some assumptions on X → S for this), (2) use Castelnuovo-Mumford regularity to produce an embedding of
the Quot scheme into the Grassmannian, and then (3) show that this embedding is relatively representable
(this uses the existence of a flattening stratification) and since the Grassmannian is representable, the Quot-
scheme must be as well.

Since I do not assume the audience has attended a previous seminar where we discussed these methods,
let me just define the Grassmannian functor associated to a quasicoherent sheaf E on a scheme X:

Grass(k > 0, E)(T ) := {quotients of ET which are locally free of rank k}
This functor is representable by a quasiprojective scheme, but if E is coherent, then it is represented by a
projective scheme. One can recover the usual Grassmannian by taking X to be the spectrum of a field and
E a vector spcae of dimension n.

2. Application to Mg for g ≥ 2

Fix g ≥ 2. Then Mg is defined to be the category fibred in groupoids and for each S ∈ Schét, one has the
groupoid of

Mg(S) := {f : C → S | f smooth proper with connected genus g curves for geometric fibres} .
Theorem 2.1. The fibred category Mg is a Deligne-Mumford stack for g ≥ 2.

The proof is quite long and will not fit into a talk, so I will do some trimming of the details. Here’s a
quick summary of some of the steps.

(1) First off, we already know Mg is a stack from Jeremy’s talk.
(2) The idea of the proof is to show that Mg is some quotient stack. The useful part here is that g ≥ 2

is that the canonical bundle ωC/C of any such curve is ample and its third tensor powr is very ample.
This works over any base (not just Spec(C)) provided one makes the appropriate adjustments. Using
this, one embed the curve into some projective space (dimension 5g−6 is enough). After some more

work, one essentially gets some closed subscheme M̃g of some scheme arising from the Hilbert scheme.
Meanwhile, there is still an action of G = GL5g−5 one must quotient out corresponding to the choice

of embedding. This realizes Mg
∼= [M̃g/G] as a quotient stack.

(3) The last bit of work to do is to show that Mg is not just an algebraic stack, but a DM stack. If one
refines the condition about algebraic stacks being DM stacks iff the diagonal is formally unramified
to the situation of a quotient stack [X/G] for X a scheme, then it turns out one only needs to show
that the automorphism group schemes Autk(C) of a genus g curve over a field k = kalg is reduced.

Now here’s a sketch of the proof which we package into a sequence of lemmas and I leave to the audience
to read from Olsson’s book.

Lemma 2.2. Let (S, f : C → S) ∈ Mg(S). Let LC/SL = (Ω1
C/S)

⊗3. Then

(1) The sheaf f∗LC/S is locally free of rank 5g − 5 on S.
(2) The map f∗f∗ : LC/S → LC/S is surjective and the resulting S-map

C → P(f∗LC/S)

is a closed embedding i.e. LC/S is f -very ample.
(3) Formation of f∗LC/S commutes with base change i.e. if g : S′ → S is a morphism, then the natural

map
g∗f∗LC/S → f ′

∗LC′/S′

is an isomorphism where f ′ : C ′ := C ×S S′ → S′ is the base change of C/S.

Lemma 2.3. The functor
M̃g : Sch → Set

which takes a scheme S to the set of isomorphism classes of pairs

(f : C → S, σ : O5g−5
S

∼= f∗LC/S)

where (S, f : C → S) ∈ Mg(S) is representable by a quasi-projective scheme. Here, an isomorphism of pairs
is given by an isomorphism of curves s.t. the obvious diagram of sheaves commutes.

https://arxiv.org/pdf/math/0504590
https://arxiv.org/pdf/math/0504590
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The proof of this lemma takes up the bulk of the work. In any case, there is an action on M̃g by GL5g−5

which acts on an S-point (C/S, σ) by γ ∗ (C/S, σ) → (C/S, σ ◦ γ) for γ ∈ GL5g−5(S).

Lemma 2.4. There is an isomorphism Mg
∼= [M̃g/G].

The proof of this lemma requires one to check that the map π : M̃g → Mg given by (C/S, σ) 7→ (S,C)
has

M̃g ×Mg S

as the GS-torsor of isomorphisms σ : O5g−5
S → f∗LC/S .

Lemma 2.5. If C/k is a smooth genus g curve over k = k, then Autk(C) is a reduced group scheme.
Consequently, the previous lemma implies Mg is a Deligne-Mumford stack.

Proof. It suffices to show that if A′ → A is a surjective morphism of k-algebras with squarezero kernel, then
the map

Autk(C)(A′) → Autk(C)(A)

is injective. Let I denote the kernel of A′ → A.
Suppose α ∈ Autk(C)(A′) and α : CA → CA is a fixed automorphism. Then we need to show α is uniquely

determined. Look at the diagram

CA CA CA′

CA′ Spec(k)

α

The space of such dotted arrows, which α lands in, forms a torsor under

Hom(α∗Ω1
CA/A, I ⊗A OCA

) ∼= H0(CA, α
∗TC/A ⊗ I ⊗A OC)

The latter is zero since the tangent bundle has negative degree and so it is zero on every fibre. So the set of
possible lifts α is singleton and the map is injective. □

Remark 2.6. The situations where g = 0, 1 can also be considered, but they have a different flavor due to
the behavior of ΩC/S in these situations.

For g = 0, one has that M0
∼= BS PGL2 so it isn’t a DM stack but it is algebraic.

For g = 1, we saw before that M1 is not even a stack. But if one considers instead proper smooth algebraic
spaces C/S with geometric fibres that are connected curves of genus 1, then one gets an algebraic stack.
One can also consider the stack M1,1 classifying elliptic curves instead.

Remark 2.7. We won’t have time to get to it this semester, but Mg has a compactification Mg which is
the moduli stack of stable curves. This is the result of Deligne-Mumford’s famous paper on the subject.

3. Bunn(X)

In this section, we sketch the proof that the stack of rank n vector bundles is an algebraic stack of
finite type if we are considering f : X → S s.t. f is projective and S is noetherian. We follow Laumon-
Morét-Bailly’s proof (theorem 4.6.2.1 in their book). Another approach is taken in Lieblich’s paper and for
BunG(X) being a smooth algebraic stack in the case of curves, see Wang’s paper.

Theorem 3.1. Bunn(X/S) is an algebraic stack of finite type if X/S is projective with S noetherian.

Proof. We actually prove instead that CohX/S is an algebraic stack of finite type. (In Laumon-Moret-Bailly
it is claimed this is enough since Bunn(X/S) is an open substack of CohX/S).

The hard part is really just showing that CohX/S has a smooth atlas. This requires projectivity of X/S.

First off, take the Quot scheme QuotOn
X/X/S :=

∐
P∈Q[z] QuotPOn

X/X/S . Let Quot◦On
X/X/S denote the open

subscheme given by the condition that α : ON
U → F is in Quot◦On

X/X/S(U) if and only if Rp(fU )∗F = 0 for

p > 0 and (fU )∗α : On
U → (fU )∗M is a surjective morphism.

Now fix OX(1) a relatively ample line bundle for X/S. We have a map

PN,n : Quot◦On
X/X/S → CohX/S

https://arxiv.org/pdf/math/0603034
https://arxiv.org/abs/1104.4828
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which sends any surjecitve morphism ON
U → F to F(−n). Then we get a map∏

N≥0,n≥0

Quot◦On
X/X/S → CohX/S .

It suffices to show that this is surjective and smooth.
Let U → CohX/S be a morphism associated toM ∈ CohX/S(U) where we can assume U is an affine scheme

over S. For fixed N,n ≥ 0, one can find a largest open subscheme UN,n ⊆ U such that Rp(fU )∗F(n) = 0 for
p > 0 and f∗

U (fU )∗F(n) → F(n) is surjective and fU∗M(n) is locally free. In that case, the projection from
the fibre product

U ×CohX/S
Quot◦On

X/X/S → U

factors through UN,n and its source is the GLN -torsor

Isom(ON
UN,n

, fUN,n∗M(n)).

So the projection map is surjective and smooth and we win because we have U =
∏

N UN,n for n ≫ 0.
Now let’s show the “easier” parts i.e. checking that the diagonal is representable. Recall that repre-

sentability of the diagonal is equivalent to showing that the Isom-sheaves are algebraic spaces. But in this
situation, the Isom-sheaves are are schemes (do I need to provide more details). One only needs to show that if
u1, u2 ∈ CohX/S(U) given by M,N , then the functor Isom(u1, u2) sending φ : V → U to Isom(φ∗M, φ∗N )
is representable by some scheme. The obvious choice is to pick the subscheme of Hom(M,N )×Hom(N ,M)
corresponding to isomorphisms and consider the projection onto the first factor. □

Remark 3.2. It is necessary here to work with f : X → S projective. Otherwise, the proof of existence
of a smooth surjective atlas as above does not work. I don’t have an example offhand where (a) X is
quasiprojective and (b) Bunr(X) has not smooth surjective atlas.

Remark 3.3. As an advertisement for a summer topic, we can certainly try and learn more about BunG.
Here are some things one might hope to cover

(1) Prove that BunG(X) is a smooth algebraic stack for X a smooth projective curve, and G a reductive
group.

(2) Define the cotangent stack and study the Hitchin fibration. Basically, the tangent space to a point
of BunG(X) is the data of a Higgs bundle.

(3) Discuss some other properties of BunG(X) such as its cohomology, line bundeles on BunG(X), the
paper of Beauville-Laszlo on Conformal Blocks, etc.....(give the audience some references).
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