Motivation for stacks Question: How to describe all objects A in a nice way? (Is it a variety / scheme / .-) Ex. Describe all genus o curves? M= fRc3 if over C. More data! - over R - automorphisma Def. F: Sch op → Sets functor is repréable if F ~ Homsch (-, X) for some X. Ex. $F(X) = O_X(X)$ Thin $F \simeq Hom(-, A_C)$ Ex. $F_n(X) = \{ all line bundles L on X + \}$ (so,..., sn) generate L globelly} = { maps to $\mathbb{P}_{\mathbb{C}}^{n}$ } = Hom (-, $\mathbb{P}_{\mathbb{C}}^{n}$) Ex. Varieties / C => Set $F(X) = \{ \text{tangent spaces at } x \in X \mid x \in X \}$ = Hom (Spec $\mathbb{C}[\varepsilon]/(\varepsilon^2), -)^{\vee}$ Fact F ~ Hom (-, X) then I bijection $F(U) \iff Hom(U, X)$ \longrightarrow $F(X) \iff$ Hon (X, X) $\sim \mathcal{U}_F \iff id_X$ universal family "degnée d'eurves in P° Ex. Ţ

$$\sum_{i+j+k=d} a_{ijk} x^{i} y^{j} z^{k} = 0 \qquad \mathbb{P}_{C}^{(d+2)-1} = \mathbb{P}^{N} \Rightarrow [a_{ijk}]$$

$$U_{F} \quad is \ a \ subvariety \ of \qquad \mathbb{P}_{C}^{N} \times \mathbb{P}_{C}^{2}$$

$$g_{i} \forall en \ by \qquad \sum a_{ijk} x^{i} y^{j} z^{k} = 0$$

$$F(Y) = Hom(Y, \mathbb{P}_{C}^{N}) \qquad \mathcal{U}_{F} \times Y \rightarrow \mathcal{U}_{F}$$

$$= thu set of pullback \ diagrams \qquad Y \rightarrow \mathbb{P}_{C}^{N}$$
Lemma $F : Sch^{0}P \rightarrow Sets$

$$(A) \quad Suppre \exists fanily & (i.e. & E \in F(S)) \\ frr \quad some \ S) \quad e.t. & & & s \ are \ all \ equal \\ (& & & & & \\ (& & & & \\ cs : & & & & \\ (& & & & \\ cs : & & & \\ clumpse & not & & \\ clumps & & & \\ cl$$

Ex. - Bunr,d (-) -Mg
$$g \ge 2$$
.
(of non
represented
tandows) - Comm Rings \rightarrow Sett
tandows) R \rightarrow Nilpotents of R.
- Bung (-)
Mg is a functor
F: Sch/C \rightarrow Set
Hom(-.Mg) S \rightarrow { E \rightarrow S | E scheme Cs are
genus g curves connected &
nonsingular $C \rightarrow$ S smooth flat}
Sets
Top Spaces Preshu on Sch
F: Sch \longrightarrow Sett
Ringed spaces Shv on Schét
Sch \longrightarrow Algebraic spaces
Groupoids
Frestacks
Stacks F: Sch $\stackrel{\text{P}}{\rightarrow}$ Gpds
Stacks $\xrightarrow{\text{et}}$
PM stacks \rightarrow Alg. stacks

-

Étale si	tes		
Ex. y²	$- x^3 + x^2 = 0$		
	\prec	@[x,y]/((y ² - x ³ + x ¹)
· more open sets		C [×,y.1] /	$(y^2 - x^3 + x^3)$ $t^2 - (x - x^3)$
• GIT mo every the c	tivation: l' points thure (whole orbit	n étale case open sets	e, for containing
• Descent			
nem	objects	cover	Automop
Schemes	locally ringed space	by affine Schame	Χ
Alg. Spaces	Sheaf on ét	by affin	finite
G	Sites	schum ét locally	groups
DM stacks	Stacks for	in Ét	finite
	étale site	top.	groups
Alg. stales	Ĺ	in smooth	reducti