
Schlessinger’s Criterion

Kevin Dao

August 1, 2025

1 / 24



Definitions

Definition

A deformation functor D : Artloc /k → Set is pro-representable if there exists a
complete noetherian local k-algebra R with residue field k and an isomorphism

hR := HomArtloc /k(R,−) ∼→ D.

Definition

A morphism of deformation functors α : F → G is smooth if F (B)→ F (A)×G(A) G(B)
is surjective for all small extensions B → A.
(For emphasis I might call this formally smooth).

Definition

The pair (R,α) where α : hR → D and R is a complete Noetherian local k-algebra is a
hull for D if hR(k[ϵ]/ϵ

2)→ D(k[ϵ]/ϵ2) is an isomorphism and α is smooth.

Note: Prorepresentable using R =⇒ R is a hull.
Remark: Two hulls are noncanonically isomorphic. While the R for pro-representable is
unique up to unique isomorphism.
Remark II: If global functor is representable, then its deformation functors are
prorepresentable. OTOH, if one is considering algebraic stacks, then the definition of a
hull shows up more naturally. 2 / 24



Definitions II

Remark

If α : F → G is formally smooth, then one can induct on length (if B is Artinian local) to
conclude that F (B)→ G(B) is always surjective.
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Baby Schlessinger

Theorem (“Baby Schlessinger”)

(1) A hull for D exists iff D admits a tangent-obstruction theory.
(2) D is prorepresentable iff (T 1 ⊗M) acts simply transitively on the set of lifts aka the
exact sequence from last time was left exact

0→ T 1 ⊗M → D(B)→ D(A)→ T 2 ⊗M.
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Why is Baby Schlessinger true?

Remark

What does the existence of a hull for G have to do with anything?
If a hull exists for G, call it S with α : hS → G, then G admits a tangent-obstruction
theory. One can take T 1 = (mS/m

2
S)

∨ one considers the diagram

T 1
S ⊗M hS(B) hS(A) T 2

S ⊗M

T 1
G ⊗M G(B) G(A)

What should the candidate for T 2
G be? I think the choice is to pick T 2

G := T 2
S because by

smoothness, lifting ξ ∈ G(A) to G(B) is equivalent to being able to lift the
corresponding ξ ∈ hS(A) to ξ ∈ hS(B).
Conversely, let (T 1, T 2) be a tangent-obstruction theory. The idea is to then build a hull.
I think the proof of Schlessinger’s criterion handles this because if we work over k, then
baby Schlessinger’s hypotheses =⇒ Schlessinger’s theorem’s hypotheses.
Jeremy sketches this in his slides too.
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Why is Baby Schlessinger true? II

Remark

Assume G is prorepresentable by R. So, R is a hull and hR(B)→ hR(A)×G(A) G(B) is
a bijection. This bijection implies the left exactness of

0→ T 1
G ⊗M → G(B)→ G(A)→ T 2

G ⊗M.

since we know it to be the case for hR.
Now assume there is a tangent obstruction theory with left exactness. Find a hull R by
the first part. Then I need hR(B)→ hR(A)×G(A) G(B) to be a bijection for all small
extensions B → A. Left exactness implies T 1

G ⊗M acts simply transitively on lifts from
G(A) to G(B) and the bijection on tangent spaces gives identifies T 1

G ⊗M with
T 1
R ⊗M . But that gives the bijection via a diagram chase.
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Schlessinger

C := Artloc/k
Can also be more general with C := Artinian Λ-algebras with residue field k and Λ a
complete noetherian local k-algebra.

Theorem (Schlessinger)

Let F : C → Set be a deformation functor. Let R→ A, S → A be two maps in C.
Consider the map

F (R×A S)→ F (R)×F (A) F (S) (†)

Then F has a hull iff S1-S3 hold and F is prorepresentable iff S1-S4 hold.

S1 (gluing) if R→ A is small, then the map (†) is surjective
S2 (tangent spaces make sense) (†) is bijective for R = k[ϵ]/ϵ2 and A = k,

S3 (finite dim) dimk F (k[ϵ]/ϵ2) <∞ (as before, this is a k-vector space from previous
talks...)

S4 (separatedness) if R→ A and S → A coincide, then (†) is a bijection.

Question? For S4 we do not need to assume R→ A is small. Can one weaken S4 so
that we only need to check small extensions?
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Hull =⇒ S1-S3 and Pro-representable implies S1-S4

Assume α : hR̃ → F is a hull for F .
S1: Assume R→ A is small and S → A is any map.

hR̃(R×A S) hR̃(R)×h
R̃
(A) hR̃(S) hR̃(A)×F (A) F (R)×h

R̃
(A) hR̃(S)

F (R)×F (A) hR̃(S)

F (R×A S) F (R)×F (A) F (S)

α

≃ smooth

≃

smooth

Since the composition along ¬ is surjective, the bottom map is surjective.
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Hull =⇒ S1-S3 and Pro-Representable implies S1-S4

S2: If A = k, R = k[ϵ]/ϵ2, then WTS F (S[ϵ]/ϵ2)→ T 1
F × F (S) is bijective. Use

tangent-obstruction to see this.

T 1
F ⊗ S F (S[ϵ]/ϵ2) F (S) T 2

F ⊗ S

0 T 1
F ⊗ k F (k[ϵ]/ϵ2) F (k) T 2

F ⊗ k

Now do a diagram chase to show that F (S[ϵ]/ϵ2) is actually the fibre product for the
middle square.
S3: dimk hR̃(k[ϵ]/ϵ

2) <∞ is clear since R̃ is must have finite dimensional tangent space
by assumption.
Now assume F is pro-representable i.e. there is an isomorphism hR̃ → F .
S4: We check that there is a bijection

hR̃(R×A R)
∼→ F (R×A R)→ F (R)×F (A) F (R)

∼← hR̃(R)×h
R̃
(A) hR̃(R)

The desired bijection (the middle map) is then clear because we have a bijection
hR̃(R×A R)→ hR̃(R)×h

R̃
(A) hR̃(R).
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...

The next 5 slides consist of the proof of Schlessinger’s Theorem which I will skip in the
actual talk.
One can find the proof in Schlessinger’s “Functors of Artin Rings” paper.

Let’s jump to the examples.
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S1-S3 =⇒ Hull

Idea: Build the hull an inverse limit. By Yoneda, the map hR̃ → F corresponds to an
element ξ ∈ F (R) which we need to construct.

Step 1: We want R̃/m = k =: R̃1.
Step 2: TF is a k-vector space. Let x1, . . . , xr be a basis. Then set S := Λ[[x1, . . . , xr]]
and define

R̃2 :=
S

m2
S +mΛS

=
R̃

m2
R̃
+mΛR̃

∼= k[ϵ]/ϵ2 ×k · · · ×k k[ϵ]/ϵ2

By S2, I have F (R̃2) ∼= F (
∏r

1 k[ϵ]/ϵ
2) = TF × · · · × TF = TF ⊗ T∨

F . So
ξ2 := idTF⊗T∨

F
=

∑
xi ⊗ x∨

i .

Step 3: More generally, build R̃q, ξq ∈ F (R̃q) with R̃q = S/Jq such that (1)

R̃q/Jq−1 = R̃q−1, (2) ξq → ξq−1 under F (R̃q)→ F (R̃q−1), (3) lim←−q
(R̃q, ξq) is the

desired hull, (4) lim←−q
ξq : hR̃ → F .
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Achieving Step 3

Claim: Let Jq be the the minimal ideal J such that mSJ ⊆ J ⊆ Jq−1 and ξq−1 lifts to
F (R̃q)→ F (R̃q−1). It exists because if J,K satisfy this then J ∩K also does. (Note Jq

is a valid choice but might not be minimal). One uses H1 to show that J ∩K also
satisfies the lifting property.

Whats left? We need to check (1) TR → TF is an isomorphism and (2) hR → F is
smooth. But (1) is clear by Step 2.
To check (2), WTS hR̃(B)→ hR̃(A)×F (A) F (B) is surjective for any small extension
0→M → B → A→ 0.
First can reduce to small extensions with dimM = 1 because if B → A→ Z is a
composition of two small extensions, we can form

hR̃(B)→ hR̃(A)×F (A)F (B)→ hR̃(A
′)×F (A′)F (A)×F (A)F (B) ∼= hR̃(A

′)×F (A′)F (B).
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Achieving Step 3 continued

Note B ×A B ∼= B ×k k[ϵ]/ϵ2 via (x, y)→ (x, x) mod mB + y − x. Now

F (B)× TF = F (B)×F (k) F (k[ϵ]/ϵ2)
∼ using S2−→ F (B ×k k[ϵ]/ϵ2)

above∼= F (B ×A B)

↠ F (B)×F (A) F (B).

Now if I chase through the maps, (x, δ)→ (x, δ ·x) so that F (B)→ F (A) is a TF -torsor.
Now let f ∈ hR̃(A) and η ∈ F (B) such that ξ(f) = η̄ ∈ F (A). By transitivity of the
action, we need to find any lift of f to hR̃(B).
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Achieving Step 3 continued again

Want to find any lift of f to hR̃(B). Since f : R̃→ B, I know f factors through some

R̃q.

S R̃q ×A B B

R̃q+1 R̃q A

w

pr1

f

Claim 1. Either pr1 splits or w is surjective.
Assume pr1 is not split. Consider Im(w) which is a subring. Now if w is not surjective,

then Im(w) is a subring. It maps surjectively onto R̃q along pr1. So the kernel of

Im(w)→ R̃q is properly contained in the kernel of pr1 which is also 1-dimensional
k-vector space. So that means the kernel is zero. But then I can form the section
R̃q → Im(w) ⊆ R̃q ×A B which is a contradiction.

Claim 2. This gives a lift ℓ : R̃q+1 → R̃q ×A B as follows. If pr1 is split, use the section
to get the lift.
Now assume w is surjective. By S1, F (R̃q ×A B)→ F (R̃q)×F (A) F (B) is surjective so I

can lift ξq ∈ F (R̃q) to ξ̃q ∈ F (R̃q ×A B). But by minimality of Jq+1 and smallness, I get
that mSJq ⊆ ker(w) ⊆ Jq and ξq lifts to S/ ker(w) with Jq+1 ⊆ ker(w).
Using this, I get a map Rq+1 → B that lifts f .
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Step 4

It remains to show that if S4 is true, then I get pro-representability. Clearly
pro-representability implies S4.
Assume F (R×A R)→ F (R)×F (A) F (R) is a bijection.

I claim R̃ actually prorepresents F . It suffices to show ξ : hR̃(B)→ F (B) is an
isomorphism for all B.
We can prove this by induction on length (length zero being trivial).
Let 0→M → B → A→ 0 with dimk M = 1. Form

0 TR̃ ⊗M hR̃(B) hR̃(A)

0 TF ⊗M F (B) F (A)

S2 ≃,inductive hyp

Here, S4 is used to have left exactness.
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Example

Remember that the conditions are (S1) (†) is surjective when R→ A is small, (S2) (†) is
bijective if [R→ A] = [k[ϵ]/ϵ2 → k], (S3) tangent space is finite dimensional, and (S4)
(†) is bijective if [R→ A] = [S → A].

Example

Let P : Artloc /k → Set be given by P (A) := set of line bundles LA on XA which are
flat deformation of L on X up to isomorphism.
Then this is prorepresentable with TP = H1(X,OX) if h1(X,OX) <∞.

The R̃ in this case is of course k[[x1, . . . , xr]] where x1, . . . , xr form a basis for TP .
Prorepresentability follows from Grothendieck’s Theorem on Picard Functor but we can
do this using Sclessinger’s Criterion.
- P (k) is a single point so I have a deformation functor.
- S1 holds because if I take L′/XR and L′′/XS both deforming L/XA, then I can form
L′ ×L L′′ one X ×k (R×A S). (See next slide for statement on why.)
- S2 follows since deformations over S[ϵ]/ϵ2 should correspond to deformations over S
and k[ϵ]/ϵ2.
- S3 is Ext1(L,L) = H1(X,OX)
- S4 follows when End(L) = H0(X,OX) = k because iso class of deformations form a
torsor under H1(M ⊗OX) in that case. (Slight gap–this is for the case of small
extensions R→ A in S4. One would need to iterate to get it for all R→ A.)
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Example (technical fact)

One uses the following technical fact to justify “fibre product of sheaves does what one
expects”.

Lemma

Let R,S,A be rings with maps R→ A,S → A. Let MR,MS ,MA be modules on the
respectivel rings with maps MR →MA,MS →MA of R-modules and S-modules.
Assume MR ⊗R A→MA and N := MS ⊗S A→MA are isomorphisms.
(a) If S → A is surjective, then N ⊗R×AS R→MR is an isomorphism.
(b) If ker(S → A) is square zero and MR,MS are R-flat and S-flat resp., then N is
(R×A S)-flat and N ⊗R×AS S →MS is an isomorphism.

Remark: Apparently this result is due to Milnor and comes from Milnor’s book on
K-theory. The version above is taken from Hartshorne’s Deformation Theory book.
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Example II

Example (Example II)

Let F be a coherent sheaf on a projective scheme X. Let F be the functor with F (A)
the set of deformations F of F0 over A up to isomorphism (here we fix the isomorphism
F ′ ×A k → F . Then F has a hull. However, S4 may fail.
The functor is prorepresentable (aka S4 holds) if we assume also that F is simple.
One expects S4 to fail without simplicity since I can imagine forming FR ×FA FR but
now using a nontrivial automorphism ϕ : FA → FA.
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Example III

Example

We know the Hilbert scheme exists so the associated deformation functors are
prorepresentable.
Exercise: Use Schlessinger’s criterion to check that the local Hilbert functors are
prorepresentable.

Example

Let X0/k be a scheme. Then deformations of X0 over local Artin rings has a hull iff
either one holds (a) X0/k has isolated singularities or (b) X0/k is projective.
If H0(TX0) = 0, then the functor is actually pro-representable.
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The Dimension of R

Theorem

Let (T 1, T 2) be a tangent-obstruction theory for F . Then if R is a hull for F , we have
dimR ≥ dimT 1 − dimT 2.
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Proof of Theorem Regarding Dimension of R

Lemma

Let R ∈ Lock. Let S := k[[x1, . . . , xr]] ↠ R with TR
∼= TS and J its kernel.

Set T 1 := (mR/m
2
R)

∨ and T 2 := (J/mSJ)
∨. If T i′ is another tangent-obstruction theory

for R, then (a) T 1 ∼= T 1′ and (b) there is a functorial injection T 2 ↪→ T 2′ .

For the theorem, we know dimR ≥ dimS − (minimal number of generators of J) and
dimS = dimT 1. Now reduce J mod mS to get there are at least dimT 2 generators.
So what’s left is to prove the lemma.
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Proof of the Lemma

Part (a) that T 1 ∼= T 1′ for any pair of tangent-obstruction theories was explained by
Jeremy last time.
Part (b) requires work. I want to find some element η ∈ Hom(T 2, T 2′). That isn’t the
hard part. The functorial injection is what makes it trickier.
First, apply the Artin-Rees Lemma to pick i > 0 such that mi

S ∩ J ⊆ mSJ .
Consider

M :=
(J +mi

S)

(mSJ +mi
S)

=
J

mSJ
& B :=

S

mSJ +mi
S

Then,

0→M → B → A := B/M =
S

J +mi
S

=
R

mi
SR
→ 0

is a small extension.
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Proof of the Lemma Slide II

Using the tangent obstruction theory (T 1′ , T 2′),

hR(B)→ hR(R/mi
SR)

ob→ T ′
2 ⊗M

Def of M∼= T 2′ ⊗ (T 2) ∨ .

Now the image of π : R→ R/mi
SR is ob(π) which gives a map T 2 → T 2′ .

Claim: ob(π) is injective.

Suppose ob(π) : T 2 = M∨ → T 2′ failed to be injective. Let (M/V )∨ ⊆M∨ be its
nontrivial kernel and form

0 J S R 0

0 M B A 0

0 M/V B/V R/mi
SR 0

π

=
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Proof of the Lemma Slide III

Now we get

hR(B) hR(R/mi
SR) T 2′ ⊗M

hR(B/V ) hR(R/mi
SR) T 2′ ⊗ (M/V )

=

π→ob(π)

ob(π)→0

Now ob(π) is the obstruction to existence of lift ℓ : R→ B. Now, there is no obstruction
in lifting ℓ′ : R→ B/V according to the diagram above.
But the obstruction according to T 2 is given by the quotient map M →M/V :

hR(B/V )→ hR(R/mi
SR)→ T 2 ⊗ (M/V ) = M∨ ⊗ (M/V ) = Hom(M,M/V ).

It is a quotient map so it is nonzero. But this contradicts the fact the diagram is
commutative and ob(π)→ 0, and obstruction is independent of obstruction theory.
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