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Definitions

Definition

A deformation functor D : Art'° /k — Set is pro-representable if there exists a
complete noetherian local k-algebra R with residue field k£ and an isomorphism

hg := Homy ioc /5 (R, —) = D.

Definition
A morphism of deformation functors o : F' — G is smooth if F'(B) — F(A) xga) G(B)

is surjective for all small extensions B — A.
(For emphasis | might call this formally smooth).

Definition

The pair (R, «) where a : hg — D and R is a complete Noetherian local k-algebra is a
hull for D if hr(k[e]/e*) — D(k[e]/€?) is an isomorphism and « is smooth.

Note: Prorepresentable using R = R is a hull.

Remark: Two hulls are noncanonically isomorphic. While the R for pro-representable is
unique up to unique isomorphism.

Remark IlI: If global functor is representable, then its deformation functors are
prorepresentable. OTOH, if one is considering algebraic stacks, then the definition of a

hull shows up more naturally. 2/ 24



Definitions Il

Ifa : F — G is formally smooth, then one can induct on length (if B is Artinian local) to
conclude that F(B) — G(B) is always surjective.
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Baby Schlessinger

Theorem (“Baby Schlessinger”)

(1) A hull for D exists iff D admits a tangent-obstruction theory.
(2) D is prorepresentable iff (T* ® M) acts simply transitively on the set of lifts aka the
exact sequence from last time was left exact

0—T'®M — D(B) » D(A) - T?>® M.
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Why is Baby Schlessinger true?

Remark

What does the existence of a hull for G have to do with anything?
If a hull exists for G, call it S with « : hs — G, then G admits a tangent-obstruction
theory. One can take T* = (ms/m%)" one considers the diagram

Tée®M —— hs(B) — hs(A) —— T3 @ M

| | |

TE@M —— G(B) —— G(A)

What should the candidate for T2 be? I think the choice is to pick T := T2 because by
smoothness, lifting £ € G(A) to G(B) is equivalent to being able to lift the
corresponding & € hs(A) to & € hs(B).

Conversely, let (T*, T?) be a tangent-obstruction theory. The idea is to then build a hull.
I think the proof of Schlessinger’s criterion handles this because if we work over k, then
baby Schlessinger’s hypotheses —> Schlessinger’s theorem’s hypotheses.

Jeremy sketches this in his slides too.
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Why is Baby Schlessinger true? Il

Remark

Assume G' is prorepresentable by R. So, R is a hull and hr(B) — hr(A) X¢ga) G(B) is
a bijection. This bijection implies the left exactness of

0—->TE®M — G(B) = G(A) - Té ® M.

since we know it to be the case for hg.

Now assume there is a tangent obstruction theory with left exactness. Find a hull R by
the first part. Then | need hr(B) — hr(A) Xca) G(B) to be a bijection for all small
extensions B — A. Left exactness implies T @ M acts simply transitively on lifts from
G(A) to G(B) and the bijection on tangent spaces gives identifies Té: @ M with

TE ® M. But that gives the bijection via a diagram chase.
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Schlessinger

C:= Art'°/k
Can also be more general with C := Artinian A-algebras with residue field k£ and A a
complete noetherian local k-algebra.

Theorem (Schlessinger)
Let F' : C — Set be a deformation functor. Let R — A, S — A be two maps in C.
Consider the map
F(R xa8) = F(R) xpa F(S) (1)
Then F has a hull iff S1-S3 hold and F' is prorepresentable iff S1-54 hold.
S1 (gluing) if R — A is small, then the map (t) is surjective
S2 (tangent spaces make sense) (1) is bijective for R = k[e]/€*> and A = k,

S3 (finite dim) dimy, F(k[e]/€®) < oo (as before, this is a k-vector space from previous
talks...)

S4 (separatedness) if R — A and S — A coincide, then (}) is a bijection.

Question? For S4 we do not need to assume R — A is small. Can one weaken S4 so
that we only need to check small extensions?

7/2



Hull = S1-S3 and Pro-representable implies S1-54

Assume o : hg — F'is a hull for F.
S1: Assume R — A is small and S — A is any map.

hg(Rxa S) —== hg(R) xna) hg(S) T==% hp(A) X pay F(R) Xn(a) hg(S)

E

o F(R) X F(A) hﬁ(S)
smo‘oth
¥
F(RxaS) F(R) xpcay F(S)

Since the composition along — is surjective, the bottom map is surjective.
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Hull = S1-S3 and Pro-Representable implies S1-54

S2: If A=k, R=k[¢]/¢?, then WTS F(S[e]/e®) — T# x F(S) is bijective. Use
tangent-obstruction to see this.

Tt ®S —— F(S[e]/¢?) —— F(S) — TE® S

| | | |

0 —— Tp @k —— F(k[e]/€?) F(k) TE®k

Now do a diagram chase to show that F(S[e]/€?) is actually the fibre product for the
middle square. _

S3: dimy h(k[e]/€%) < oo is clear since R is must have finite dimensional tangent space
by assumption.

Now assume F' is pro-representable i.e. there is an isomorphism hz — F.

S4: We check that there is a bijection

The desired bijection (the middle map) is then clear because we have a bijection
hip(R xa R) = hg(R) Xpnpa) hg(R).

9/ 2



The next 5 slides consist of the proof of Schlessinger’'s Theorem which | will skip in the
actual talk.
One can find the proof in Schlessinger's “Functors of Artin Rings” paper.
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$1-S3 — Hull W

Idea: Build the hull an inverse limit. By Yoneda, the map hz — I’ corresponds to an
element £ € F(R) which we need to construct.

Step 1: We want R/m = k =: R;.

Step 2: Tr is a k-vector space. Let x1,...,2, be a basis. Then set S := Al[z1,...,z/]]
and define

~ S R 2 2
Ry = = — >~k cee k
2 m% +mpS m% +maR [el/e - i kel /e

By S2, | have F(R2) = F([T} k[e]/€?) = Tr x --- x Tr = Tr @ Ty So
& = idTF®Tf¥ = sz ® x;/
Step 3: More generally, build R,, &, € F(E ) with Rq = S/Jq such that (1)
Ry/Jg-1 =Ry 1, (2) & — &4—1 under F(R,) — F(Ry-1), (3) lim (Rq,fq) is the
desired hull, (4) Wm & :hp— F.

q
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Achieving Step 3 \/

Clalm: Let J(Lbe the the minimal ideal J such that msJ C J C Jy—1 and {41 lifts to
F(Ry) = F(Rg—1). It exists because if J, K satisfy this then J N K also does. (Note J,
is a valid choice but might not be minimal). One uses H1 to show that J N K also
satisfies the lifting property.

Whats left? We need to check (1) Tr — T is an isomorphism and (2) hg — F'is
smooth. But (1) is clear by Step 2.

To check (2), WTS hi(B) = hi(A) X peay F(B) is surjective for any small extension
0—+M-—>B—A—0.

First can reduce to small extensions with dim M = 1 because if B - A — Z is a
composition of two small extensions, we can form

hi(B) = h(A) X pay F(B) = h(A) X pany F(A) X payF(B) = h(A) X pary F(B).
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Achieving Step 3 continued Y

Note B x4 B = B xj k[¢]/€* via (z,y) — (2,2) mod mp 4y — x. Now
F(B) x Tp = F(B) xp) F(kle]/€®) ~ SES2 BB x i kle]/€%) < F(B x4 B)
—» F(B) XF(A) F(B)
Now if | chase through the maps, (z,6) — (z,d- ac) that F(B) — F(A) is a Tr-torsor.
Now let f € h(A) and n € F(B) such that f( )= F(A). By transitivity of the
action, we need to find any lift of f to hz(B).
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Achieving Step 3 continued again \

Want to find any lift of f to hz(B). Since f : R — B, | know f factors through some
Ry.

S —* s R, xaB—— B

§q+1 éq ! A

Claim 1. Either pry splits or w is surjective.

Assume pry is not split. Consider Im(w) which is a subring. Now if w is not surjective,
then Im(w) is a subring. It maps surjectively onto Eq along pri. So the kernel of

Im(w) — Eq is properly contained in the kernel of pr; which is also 1-dimensional
k-vector space. So that means the kernel is zero. But then | can form the section

Ry — Im(w) C Rq X4 B which is a contradiction.

Claim 2. This gives a lift £ : EQ+1 — Eq x o B as follows. If pri is split, use the section
to get the lift. _ ~

Now assume w is surjective. By S1, F(Ry xa B) = F(Ry) X p(ay F(B) is surjective so |
can lift &, € F(R,) to &, € F(R, x4 B). But by minimality of J 41 and smallness, | get
that mgJy; C ker(w) C J, and &, lifts to S/ ker(w) with Jg41 C ker(w).

Using this, | get a map Rq4+1 — B that lifts f.
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It remains to show that if S4 is true, then | get pro-representability. Clearly
pro-representability implies S4.

Assume F(R x4 R) — F(R) Xr(a) F(R) is a bijection.

| claim R actually prorepresents F'. It suffices to show ¢ : hz(B) = F(B) is an
isomorphism for all B.

We can prove this by induction on length (length zero being trivial).

Let0 - M — B — A — 0 with dimy M = 1. Form

0 —— Tz @M —s h(B)

S2 l J{:,inductive hyp

— hi(4)
0 — Tr @M —— F(B) —— F(A)

Here, S4 is used to have left exactness.
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Example \

Remember that the conditions are (S1) (}) is surjective when R — A is small, (S2) (}) is
bijective if [R — A] = [k[e]/e* — k], (S3) tangent space is finite dimensional, and (S4)
(1) is bijective if [R — A] =[S — A].

Let P : Art'® /k — Set be given by P(A) := set of line bundles £4 on X4 which are
flat deformation of £ on X up to isomorphism.

Then this is prorepresentable with Tp = H'(X,Ox) if h*(X,0x) < co.

The R in this case is of course k[[z1,...,a,]] where z1,...,z, form a basis for Tp.
Prorepresentability follows from Grothendieck's Theorem on Picard Functor but we can
do this using Sclessinger's Criterion.

- P(k) is a single point so | have a deformation functor.

- S1 holds because if | take £/ Xg and £ /Xg both deforming £/X 4, then | can form
L' %z L" one X X1 (R X4 S). (See next slide for statement on why.)

- S2 follows since deformations over S[e]/e* should correspond to deformations over S
and k[e] /2.

- S3is Ext! (£, £) = H'(X,Ox)

- S4 follows when End(L) = H°(X,Ox) = k because iso class of deformations form a
torsor under H*(M ® Ox) in that case. (Slight gap—this is for the case of small
extensions R — A in S4. One would need to iterate to get it for all R — A.)
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Example (technical fact)

One uses the following technical fact to justify “fibre product of sheaves does what one
expects”.

Lemma

Let R, S, A be rings with maps R — A,S — A. Let Mr, Ms, Ma be modules on the
respectivel rings with maps Mr — Ma, Ms — M of R-modules and S-modules.
Assume Mr ®r A — Ma and N := Ms ®s A — My are isomorphisms.

(a) If S — A is surjective, then N ®rx 45 R — Mg is an isomorphism.

(b) Ifker(S — A) is square zero and Mg, Mg are R-flat and S-flat resp., then N is
(R xa S)-flat and N @rx 45 S — Mg is an isomorphism.

Remark: Apparently this result is due to Milnor and comes from Milnor’'s book on
K-theory. The version above is taken from Hartshorne’'s Deformation Theory book.
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Example Il

Let F be a coherent sheaf on a projective scheme X. Let F' be the functor with F'(A)
the set of deformations F of Fy over A up to isomorphism (here we fix the isomorphism
F' xak— F. Then F has a hull. However, S4 may fail.

The functor is prorepresentable (aka S4 holds) if we assume also that F is simple.

One expects 5S4 to fail without simplicity since | can imagine forming Fr x 7, Fr but
now using a nontrivial automorphism ¢ : Fa — Fa.
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Example 11 \

We know the Hilbert scheme exists so the associated deformation functors are
prorepresentable.

Exercise: Use Schlessinger's criterion to check that the local Hilbert functors are
prorepresentable.

Let Xo/k be a scheme. Then deformations of X over local Artin rings has a hull iff
either one holds (a) Xo/k has isolated singularities or (b) Xo/k is projective.
If H°(Tx,) = 0, then the functor is actually pro-representable.
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The Dimension of R

Let (T, T?) be a tangent-obstruction theory for F. Then if R is a hull for F', we have
dim R > dimT" — dim T?.
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Proof of Theorem Regarding Dimension of R

Lemma

Let R € Loc. Let S := k[[z1,...,2z,]] > R with Tr = Ts and J its kernel.

Set T' := (mgr/m%)" and T? := (J/msJ)". IFT" is another tangent-obstruction theory
for R, then (a) T' = T" and (b) there is a functorial injection T* — T2 .

For the theorem, we know dim R > dim S — (minimal number of generators of J) and
dim S = dimT". Now reduce J mod mg to get there are at least dim 72 generators.
So what's left is to prove the lemma.
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Proof of the Lemma W

Part (a) that T* = T for any pair of tangent-obstruction theories was explained by
Jeremy last time.

Part (b) requires work. | want to find some element n € Hom(TQ,Tz/). That isn't the
hard part. The functorial injection is what makes it trickier.

First, apply the Artin-Rees Lemma to pick i > 0 such that m4 N J C mgJ.

Consider

M := (J+m5) = J & B::L.
(msgJ +m%)  mgJ mgJ +mj
Then,
S R
0—-M-—B—A:=B/M= =——=0

J+mi  miR

is a small extension.
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Proof of the Lemma Slide Il W

Using the tangent obstruction theory (Tl,,TQ/),
i ob , Def of M o 2
hr(B) = hgr(R/mgR) = To @M = T° @(T°)V.
Now the image of 7 : R — R/m%R is ob(w) which gives a map T2 — T

Claim: ob(7) is injective.
Suppose ob(w) : T?> = MY — T? failed to be injective. Let (M/V)Y C M" be its

nontrivial kernel and form

0 J S R 0
| | R

0 M B A 0
| | |-

0 M)V B/V R/miR — 0
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Proof of the Lemma Slide Il W

Now we get

T—ob ()

hi(B) — hp(R/misR) — =0, 72 g
l ﬂ: lab(ﬂ)%(}

hr(B/V) — hr(R/msR) —— T @ (M/V)

Now ob(7) is the obstruction to existence of lift £: R — B. Now, there is no obstruction
in lifting ¢’ : R — B/V according to the diagram above.
But the obstruction according to T2 is given by the quotient map M — M/V:

hr(B/V) = hr(R/msR) = T?> @ (M/V) = M" @ (M/V) = Hom(M, M/V).

It is a quotient map so it is nonzero. But this contradicts the fact the diagram is
commutative and ob(w) — 0, and obstruction is independent of obstruction theory.
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