Schlessinger's Criterion

Kevin Dao

August 1, 2025

Definitions

Definition

A deformation functor $D: \operatorname{Art}^{loc}/k \to \operatorname{Set}$ is **pro-representable** if there exists a complete noetherian local k-algebra R with residue field k and an isomorphism

$$h_R := \operatorname{Hom}_{\operatorname{Art}^{loc}/k}(R, -) \stackrel{\sim}{\to} D.$$

Definition

A morphism of deformation functors $\alpha: F \to G$ is **smooth** if $F(B) \to F(A) \times_{G(A)} G(B)$ is surjective for all small extensions $B \to A$.

(For emphasis I might call this formally smooth).

Definition

The pair (R,α) where $\alpha:h_R\to D$ and R is a complete Noetherian local k-algebra is a hull for D if $h_R(k[\epsilon]/\epsilon^2)\to D(k[\epsilon]/\epsilon^2)$ is an isomorphism and α is smooth.

Note: Prorepresentable using $R \implies R$ is a hull.

Remark: Two hulls are noncanonically isomorphic. While the R for pro-representable is unique up to unique isomorphism.

Remark II: If global functor is representable, then its deformation functors are prorepresentable. OTOH, if one is considering algebraic stacks, then the definition of a hull shows up more naturally.

Definitions II

Remark

If $\alpha: F \to G$ is formally smooth, then one can induct on length (if B is Artinian local) to conclude that $F(B) \to G(B)$ is always surjective.

Baby Schlessinger

Theorem ("Baby Schlessinger")

- (1) A hull for D exists iff D admits a tangent-obstruction theory.
- (2) D is prorepresentable iff $(T^1 \otimes M)$ acts simply transitively on the set of lifts aka the exact sequence from last time was left exact

$$0 \to T^1 \otimes M \to D(B) \to D(A) \to T^2 \otimes M.$$

Why is Baby Schlessinger true?

Remark

What does the existence of a hull for G have to do with anything? If a hull exists for G, call it S with $\alpha:h_S\to G$, then G admits a tangent-obstruction theory. One can take $T^1=(m_S/m_S^2)^\vee$ one considers the diagram

$$T_S^1 \otimes M \longrightarrow h_S(B) \longrightarrow h_S(A) \longrightarrow T_S^2 \otimes M$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T_G^1 \otimes M \longrightarrow G(B) \longrightarrow G(A)$$

What should the candidate for T_G^2 be? I think the choice is to pick $T_G^2 := T_S^2$ because by smoothness, lifting $\xi \in G(A)$ to G(B) is equivalent to being able to lift the corresponding $\xi \in h_S(A)$ to $\xi \in h_S(B)$.

Conversely, let (T^1, T^2) be a tangent-obstruction theory. The idea is to then build a hull. I think the proof of Schlessinger's criterion handles this because if we work over k, then baby Schlessinger's hypotheses \implies Schlessinger's theorem's hypotheses. Jeremy sketches this in his slides too.

Remark

Assume G is prorepresentable by R. So, R is a hull and $h_R(B) \to h_R(A) \times_{G(A)} G(B)$ is a bijection. This bijection implies the left exactness of

$$0 \to T_G^1 \otimes M \to G(B) \to G(A) \to T_G^2 \otimes M.$$

since we know it to be the case for h_R .

Now assume there is a tangent obstruction theory with left exactness. Find a hull R by the first part. Then I need $h_R(B) \to h_R(A) \times_{G(A)} G(B)$ to be a bijection for all small extensions $B \to A$. Left exactness implies $T_G^1 \otimes M$ acts simply transitively on lifts from G(A) to G(B) and the bijection on tangent spaces gives identifies $T_G^1 \otimes M$ with $T_R^1 \otimes M$. But that gives the bijection via a diagram chase.

Schlessinger

$$\mathcal{C} := Art^{loc}/k$$

Can also be more general with $\mathcal{C}:=$ Artinian Λ -algebras with residue field k and Λ a complete noetherian local k-algebra.

Theorem (Schlessinger)

Let $F: \mathcal{C} \to \operatorname{Set}$ be a deformation functor. Let $R \to A$, $S \to A$ be two maps in \mathcal{C} . Consider the map

$$F(R \times_A S) \to F(R) \times_{F(A)} F(S)$$
 (†)

Then F has a hull iff S1-S3 hold and F is prorepresentable iff S1-S4 hold.

- S1 (gluing) if $R \to A$ is small, then the map (\dagger) is surjective
- S2 (tangent spaces make sense) (†) is bijective for $R=k[\epsilon]/\epsilon^2$ and A=k,
- S3 (finite dim) $\dim_k F(k[\epsilon]/\epsilon^2) < \infty$ (as before, this is a k-vector space from previous talks...)
- S4 (separatedness) if $R \to A$ and $S \to A$ coincide, then (\dagger) is a bijection.

Question? For S4 we do not need to assume $R \to A$ is small. Can one weaken S4 so that we only need to check small extensions?

Assume $\alpha: h_{\widetilde{R}} \to F$ is a **hull** for F.

S1: Assume $R \to A$ is small and $S \to A$ is any map.

Since the composition along \neg is surjective, the bottom map is surjective.

Hull ⇒ S1-S3 and Pro-Representable implies S1-S4

S2: If A=k, $R=k[\epsilon]/\epsilon^2$, then WTS $F(S[\epsilon]/\epsilon^2)\to T_F^1\times F(S)$ is bijective. Use tangent-obstruction to see this.

$$T_F^1 \otimes S \longrightarrow F(S[\epsilon]/\epsilon^2) \longrightarrow F(S) \longrightarrow T_F^2 \otimes S$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow T_F^1 \otimes k \longrightarrow F(k[\epsilon]/\epsilon^2) \longrightarrow F(k) \longrightarrow T_F^2 \otimes k$$

Now do a diagram chase to show that $F(S[\epsilon]/\epsilon^2)$ is actually the fibre product for the middle square.

S3: $\dim_k h_{\widetilde{R}}(k[\epsilon]/\epsilon^2) < \infty$ is clear since \widetilde{R} is must have finite dimensional tangent space by assumption.

Now assume F is pro-representable i.e. there is an isomorphism $h_{\widetilde{R}} \to F.$

S4: We check that there is a bijection

$$h_{\widetilde{R}}(R \times_A R) \xrightarrow{\sim} F(R \times_A R) \to F(R) \times_{F(A)} F(R) \xleftarrow{\sim} h_{\widetilde{R}}(R) \times_{h_{\widetilde{R}}(A)} h_{\widetilde{R}}(R)$$

The desired bijection (the middle map) is then clear because we have a bijection $h_{\widetilde{R}}(R \times_A R) \to h_{\widetilde{R}}(R) \times_{h_{\widetilde{R}}(A)} h_{\widetilde{R}}(R)$.

The next 5 slides consist of the proof of Schlessinger's Theorem which I will skip in the actual talk.

One can find the proof in Schlessinger's "Functors of Artin Rings" paper.

Let's jump to the examples

Idea: Build the hull an inverse limit. By Yoneda, the map $h_{\widetilde{R}} \to F$ corresponds to an element $\xi \in F(R)$ which we need to construct.

Step 1: We want $\widetilde{R}/\mathfrak{m}=k=:\widetilde{R}_1$.

Step 2: T_F is a k-vector space. Let x_1,\ldots,x_r be a basis. Then set $S:=\Lambda[[x_1,\ldots,x_r]]$ and define

$$\widetilde{R}_2 := \frac{S}{\mathfrak{m}_S^2 + \mathfrak{m}_{\Lambda} S} = \frac{\widetilde{R}}{\mathfrak{m}_{\widetilde{R}}^2 + \mathfrak{m}_{\Lambda} \widetilde{R}} \cong k[\epsilon]/\epsilon^2 \times_k \cdots \times_k k[\epsilon]/\epsilon^2$$

By S2, I have
$$F(\widetilde{R}_2) \cong F(\prod_1^r k[\epsilon]/\epsilon^2) = T_F \times \cdots \times T_F = T_F \otimes T_F^{\vee}$$
. So $\xi_2 := id_{T_F \otimes T_F^{\vee}} = \sum x_i \otimes x_i^{\vee}$.

Step 3: More generally, build $\widetilde{R}_q, \xi_q \in F(\widetilde{R}_q)$ with $\widetilde{R}_q = S/J_q$ such that (1) $\widetilde{R}_q/J_{q-1} = \widetilde{R}_{q-1}$, (2) $\xi_q \to \xi_{q-1}$ under $F(\widetilde{R}_q) \to F(\widetilde{R}_{q-1})$, (3) $\varprojlim_q (\widetilde{R}_q, \xi_q)$ is the desired hull, (4) $\varprojlim_q \xi_q : h_{\widetilde{R}} \to F$.

Achieving Step 3

Claim: Let J_q be the the minimal ideal J such that $\mathfrak{m}_S J \subseteq J \subseteq J_{q-1}$ and ξ_{q-1} lifts to $F(\widetilde{R}_q) \to F(\widetilde{R}_{q-1})$. It exists because if J,K satisfy this then $J \cap K$ also does. (Note J_q is a valid choice but might not be minimal). One uses H1 to show that $J \cap K$ also satisfies the lifting property.

Whats left? We need to check (1) $T_R \to T_F$ is an isomorphism and (2) $h_R \to F$ is smooth. But (1) is clear by Step 2.

To check (2), WTS $h_{\widetilde{R}}(B) \to h_{\widetilde{R}}(A) \times_{F(A)} F(B)$ is surjective for any small extension $0 \to M \to B \to A \to 0$.

First can reduce to small extensions with $\dim M=1$ because if $B\to A\to Z$ is a composition of two small extensions, we can form

$$h_{\widetilde{R}}(B) \to h_{\widetilde{R}}(A) \times_{F(A)} F(B) \to h_{\widetilde{R}}(A') \times_{F(A')} F(A) \times_{F(A)} F(B) \cong h_{\widetilde{R}}(A') \times_{F(A')} F(B).$$

Achieving Step 3 continued

Note $B \times_A B \cong B \times_k k[\epsilon]/\epsilon^2$ via $(x,y) \to (x,x) \mod \mathfrak{m}_B + y - x$. Now

$$F(B) \times T_F = F(B) \times_{F(k)} F(k[\epsilon]/\epsilon^2) \xrightarrow{\sim \text{ using S2}} F(B \times_k k[\epsilon]/\epsilon^2) \overset{\text{above}}{\cong} F(B \times_A B)$$

$$\longrightarrow F(B) \times_{F(A)} F(B).$$

Now if I chase through the maps, $(x,\delta) \to (x,\delta \cdot x)$ so that $F(B) \to F(A)$ is a T_F -torsor. Now let $f \in h_{\widetilde{R}}(A)$ and $\eta \in F(B)$ such that $\xi(f) = \bar{\eta} \in F(A)$. By transitivity of the action, we need to find any lift of f to $h_{\widetilde{R}}(B)$.

Achieving Step 3 continued again

Want to find any lift of f to $h_{\widetilde{R}}(B)$. Since $f:\widetilde{R}\to B$, I know f factors through some \widetilde{R}_q .

$$S \xrightarrow{w} \widetilde{R}_{q} \times_{A} B \xrightarrow{} B$$

$$\downarrow \qquad \qquad \downarrow^{pr_{1}} \qquad \downarrow$$

$$\widetilde{R}_{q+1} \xrightarrow{} \widetilde{R}_{q} \xrightarrow{f} A$$

Claim 1. Either pr_1 splits or w is surjective.

Assume pr_1 is not split. Consider $\mathrm{Im}(w)$ which is a subring. Now if w is not surjective, then $\mathrm{Im}(w)$ is a subring. It maps surjectively onto \widetilde{R}_q along pr_1 . So the kernel of $\mathrm{Im}(w) \to \widetilde{R}_q$ is properly contained in the kernel of pr_1 which is also 1-dimensional k-vector space. So that means the kernel is zero. But then I can form the section $\widetilde{R}_q \to \mathrm{Im}(w) \subseteq \widetilde{R}_q \times_A B$ which is a contradiction.

Claim 2. This gives a lift $\ell: R_{q+1} \to R_q \times_A B$ as follows. If pr_1 is split, use the section to get the lift.

Now assume w is surjective. By S1, $F(\widetilde{R}_q \times_A B) \to F(\widetilde{R}_q) \times_{F(A)} F(B)$ is surjective so I can lift $\xi_q \in F(\widetilde{R}_q)$ to $\widetilde{\xi_q} \in F(\widetilde{R}_q \times_A B)$. But by minimality of J_{q+1} and smallness, I get that $\mathfrak{m}_S J_q \subseteq \ker(w) \subseteq J_q$ and ξ_q lifts to $S/\ker(w)$ with $J_{q+1} \subseteq \ker(w)$. Using this, I get a map $R_{q+1} \to B$ that lifts f.

It remains to show that if S4 is true, then I get pro-representability. Clearly pro-representability implies S4.

Assume $F(R \times_A R) \to F(R) \times_{F(A)} F(R)$ is a bijection.

I claim \widetilde{R} actually prorepresents F. It suffices to show $\xi:h_{\widetilde{R}}(B)\to F(B)$ is an isomorphism for all B.

We can prove this by induction on length (length zero being trivial).

Let
$$0 \to M \to B \to A \to 0$$
 with $\dim_k M = 1$. Form

Here, S4 is used to have left exactness.

Remember that the conditions are (S1) (†) is surjective when $R \to A$ is small, (S2) (†) is bijective if $[R \to A] = [k[\epsilon]/\epsilon^2 \to k]$, (S3) tangent space is finite dimensional, and (S4) (†) is bijective if $[R \to A] = [S \to A]$.

Exampl

Let $P: \operatorname{Art}^{loc}/k \to \operatorname{Set}$ be given by $P(A) := \operatorname{set}$ of line bundles \mathcal{L}_A on X_A which are flat deformation of \mathcal{L} on X up to isomorphism.

Then this is prorepresentable with $T_P = H^1(X, O_X)$ if $h^1(X, O_X) < \infty$.

The \hat{R} in this case is of course $k[[x_1, \ldots, x_r]]$ where x_1, \ldots, x_r form a basis for T_P . Prorepresentability follows from Grothendieck's Theorem on Picard Functor but we can

- P(k) is a single point so I have a deformation functor.
- S1 holds because if I take \mathcal{L}'/X_R and \mathcal{L}''/X_S both deforming \mathcal{L}/X_A , then I can form $\mathcal{L}'\times_{\mathcal{L}}\mathcal{L}''$ one $X\times_k(R\times_AS)$. (See next slide for statement on why.)
- S2 follows since deformations over $S[\epsilon]/\epsilon^2$ should correspond to deformations over S and $k[\epsilon]/\epsilon^2$.
- S3 is $\operatorname{Ext}^1(\mathcal{L},\mathcal{L}) = H^1(X,O_X)$
- S4 follows when $End(\mathcal{L})=H^0(X,O_X)=k$ because iso class of deformations form a torsor under $H^1(M\otimes O_X)$ in that case. (Slight gap—this is for the case of small extensions $R\to A$ in S4. One would need to iterate to get it for all $R\to A$.)

Remember that the conditions are (S1) (†) is surjective when $R \to A$ is small, (S2) (†) is bijective if $[R \to A] = [k[\epsilon]/\epsilon^2 \to k]$, (S3) tangent space is finite dimensional, and (S4) (†) is bijective if $[R \to A] = [S \to A]$.

Exampl

Let $P: \operatorname{Art}^{loc}/k \to \operatorname{Set}$ be given by $P(A) := \operatorname{set}$ of line bundles \mathcal{L}_A on X_A which are flat deformation of \mathcal{L} on X up to isomorphism.

Then this is prorepresentable with $T_P = H^1(X, O_X)$ if $h^1(X, O_X) < \infty$.

The \hat{R} in this case is of course $k[[x_1, \ldots, x_r]]$ where x_1, \ldots, x_r form a basis for T_P . Prorepresentability follows from Grothendieck's Theorem on Picard Functor but we can

- P(k) is a single point so I have a deformation functor.
- S1 holds because if I take \mathcal{L}'/X_R and \mathcal{L}''/X_S both deforming \mathcal{L}/X_A , then I can form $\mathcal{L}'\times_{\mathcal{L}}\mathcal{L}''$ one $X\times_k(R\times_AS)$. (See next slide for statement on why.)
- S2 follows since deformations over $S[\epsilon]/\epsilon^2$ should correspond to deformations over S and $k[\epsilon]/\epsilon^2$.
- S3 is $\operatorname{Ext}^1(\mathcal{L},\mathcal{L}) = H^1(X,O_X)$
- S4 follows when $End(\mathcal{L})=H^0(X,O_X)=k$ because iso class of deformations form a torsor under $H^1(M\otimes O_X)$ in that case. (Slight gap—this is for the case of small extensions $R\to A$ in S4. One would need to iterate to get it for all $R\to A$.)

Remember that the conditions are (S1) (†) is surjective when $R \to A$ is small, (S2) (†) is bijective if $[R \to A] = [k[\epsilon]/\epsilon^2 \to k]$, (S3) tangent space is finite dimensional, and (S4) (†) is bijective if $[R \to A] = [S \to A]$.

Exampl

Let $P: \operatorname{Art}^{loc}/k \to \operatorname{Set}$ be given by $P(A) := \operatorname{set}$ of line bundles \mathcal{L}_A on X_A which are flat deformation of \mathcal{L} on X up to isomorphism.

Then this is prorepresentable with $T_P = H^1(X, O_X)$ if $h^1(X, O_X) < \infty$.

The \hat{R} in this case is of course $k[[x_1, \ldots, x_r]]$ where x_1, \ldots, x_r form a basis for T_P . Prorepresentability follows from Grothendieck's Theorem on Picard Functor but we can

- P(k) is a single point so I have a deformation functor.
- S1 holds because if I take \mathcal{L}'/X_R and \mathcal{L}''/X_S both deforming \mathcal{L}/X_A , then I can form $\mathcal{L}'\times_{\mathcal{L}}\mathcal{L}''$ one $X\times_k(R\times_AS)$. (See next slide for statement on why.)
- S2 follows since deformations over $S[\epsilon]/\epsilon^2$ should correspond to deformations over S and $k[\epsilon]/\epsilon^2$.
- S3 is $\operatorname{Ext}^1(\mathcal{L},\mathcal{L}) = H^1(X,O_X)$
- S4 follows when $End(\mathcal{L})=H^0(X,O_X)=k$ because iso class of deformations form a torsor under $H^1(M\otimes O_X)$ in that case. (Slight gap—this is for the case of small extensions $R\to A$ in S4. One would need to iterate to get it for all $R\to A$.)

Here are some examples. Remember that the conditions are (S1) (†) is surjective when $R \to A$ is small, (S2) (†) is bijective if $[R \to A] = [k[\epsilon]/\epsilon^2 \to k]$, (S3) tangent space is finite dimensional, and (S4) (†) is bijective if $[R \to A] = [S \to A]$.

Exampl

Let $P: \operatorname{Art}^{loc}/k \to \operatorname{Set}$ be given by $P(A) := \operatorname{set}$ of line bundles \mathcal{L}_A on X_A which are flat deformation of \mathcal{L} on X up to isomorphism.

Then this is prorepresentable with $T_P = H^1(X, O_X)$ if $h^1(X, O_X) < \infty$.

The \hat{R} in this case is of course $k[[x_1, \ldots, x_r]]$ where x_1, \ldots, x_r form a basis for T_P . Prorepresentability follows from Grothendieck's Theorem on Picard Functor but we can

- P(k) is a single point so I have a deformation functor.
- S1 holds because if I take \mathcal{L}'/X_R and \mathcal{L}''/X_S both deforming \mathcal{L}/X_A , then I can form $\mathcal{L}'\times_{\mathcal{L}}\mathcal{L}''$ one $X\times_k(R\times_AS)$. (See next slide for statement on why.)
- S2 follows since deformations over $S[\epsilon]/\epsilon^2$ should correspond to deformations over S and $k[\epsilon]/\epsilon^2$.
- S3 is $\operatorname{Ext}^1(\mathcal{L},\mathcal{L}) = H^1(X,O_X)$
- S4 follows when $End(\mathcal{L})=H^0(X,O_X)=k$ because iso class of deformations form a torsor under $H^1(M\otimes O_X)$ in that case. (Slight gap—this is for the case of small extensions $R\to A$ in S4. One would need to iterate to get it for all $R\to A$.)

Example (technical fact)

One uses the following technical fact to justify "fibre product of sheaves does what one expects".

Lemma

Let R, S, A be rings with maps $R \to A, S \to A$. Let M_R, M_S, M_A be modules on the respectivel rings with maps $M_R \to M_A, M_S \to M_A$ of R-modules and S-modules. Assume $M_R \otimes_R A \to M_A$ and $N := M_S \otimes_S A \to M_A$ are isomorphisms.

- (a) If $S \to A$ is surjective, then $N \otimes_{R \times_A S} R \to M_R$ is an isomorphism.
- (b) If $\ker(S \to A)$ is square zero and M_R, M_S are R-flat and S-flat resp., then N is $(R \times_A S)$ -flat and $N \otimes_{R \times_A S} S \to M_S$ is an isomorphism.

Remark: Apparently this result is due to Milnor and comes from Milnor's book on K-theory. The version above is taken from Hartshorne's Deformation Theory book.

Example II

Example (Example II)

Let $\mathcal F$ be a coherent sheaf on a projective scheme X. Let F be the functor with F(A) the set of deformations $\mathcal F$ of $\mathcal F_0$ over A up to isomorphism (here we fix the isomorphism $\mathcal F' \times_A k \to \mathcal F$. Then F has a hull. However, S4 may fail.

The functor is prorepresentable (aka S4 holds) if we assume also that $\mathcal F$ is simple. One expects S4 to fail without simplicity since I can imagine forming $\mathcal F_R \times_{\mathcal F_A} \mathcal F_R$ but now using a nontrivial automorphism $\phi: \mathcal F_A \to \mathcal F_A$.

Example III

Example

We know the Hilbert scheme exists so the associated deformation functors are prorepresentable.

Exercise: Use Schlessinger's criterion to check that the local Hilbert functors are prorepresentable.

Example

Let X_0/k be a scheme. Then deformations of X_0 over local Artin rings has a hull iff either one holds (a) X_0/k has isolated singularities or (b) X_0/k is projective. If $H^0(T_{X_0})=0$, then the functor is actually pro-representable.

The Dimension of R

Theorem

Let (T^1,T^2) be a tangent-obstruction theory for F. Then if R is a hull for F, we have $\dim R \geq \dim T^1 - \dim T^2$.

Proof of Theorem Regarding Dimension of ${\cal R}$

Lemma

Let $R \in \operatorname{Loc}_k$. Let $S := k[[x_1, \dots, x_r]] \to R$ with $T_R \cong T_S$ and J its kernel. Set $T^1 := (\mathfrak{m}_R/\mathfrak{m}_R^2)^\vee$ and $T^2 := (J/\mathfrak{m}_S J)^\vee$. If $T^{i'}$ is another tangent-obstruction theory for R, then (a) $T^1 \cong T^{1'}$ and (b) there is a functorial injection $T^2 \hookrightarrow T^{2'}$.

For the theorem, we know $\dim R \ge \dim S$ – (minimal number of generators of J) and $\dim S = \dim T^1$. Now reduce J mod \mathfrak{m}_S to get there are at least $\dim T^2$ generators. So what's left is to prove the lemma.

Proof of the Lemma

Part (a) that $T^1 \cong T^{1'}$ for any pair of tangent-obstruction theories was explained by Jeremy last time.

Part (b) requires work. I want to find some element $\eta \in \mathrm{Hom}(T^2,T^{2'})$. That isn't the hard part. The functorial injection is what makes it trickier.

First, apply the Artin-Rees Lemma to pick i>0 such that $\mathfrak{m}_S^i\cap J\subseteq\mathfrak{m}_SJ$.

Consider

$$M:=\frac{(J+\mathfrak{m}_S^i)}{(\mathfrak{m}_SJ+\mathfrak{m}_S^i)}=\frac{J}{\mathfrak{m}_SJ} \qquad \& \qquad B:=\frac{S}{\mathfrak{m}_SJ+\mathfrak{m}_S^i}$$

Then,

$$0 \to M \to B \to A := B/M = \frac{S}{J + \mathfrak{m}_S^i} = \frac{R}{\mathfrak{m}_S^i R} \to 0$$

is a small extension.

Proof of the Lemma Slide II

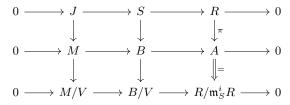
Using the tangent obstruction theory $(T^{1^\prime},T^{2^\prime})$,

$$h_R(B) \to h_R(R/\mathfrak{m}_S^i R) \stackrel{ob}{\to} T_2' \otimes M \stackrel{\mathsf{Def of } M}{\cong} T^{2'} \otimes (T^2) \vee.$$

Now the image of $\pi:R\to R/\mathfrak{m}_S^iR$ is $ob(\pi)$ which gives a map $T^2\to T^{2'}$.

Claim: $ob(\pi)$ is injective.

Suppose $ob(\pi): T^2=M^\vee \to T^{2'}$ failed to be injective. Let $(M/V)^\vee \subseteq M^\vee$ be its nontrivial kernel and form



Now we get

Now $ob(\pi)$ is the obstruction to existence of lift $\ell:R\to B$. Now, there is no obstruction in lifting $\ell':R\to B/V$ according to the diagram above.

But the obstruction according to T^2 is given by the quotient map M o M/V:

$$h_R(B/V) \to h_R(R/\mathfrak{m}_S^i R) \to T^2 \otimes (M/V) = M^{\vee} \otimes (M/V) = \operatorname{Hom}(M, M/V).$$

It is a quotient map so it is nonzero. But this contradicts the fact the diagram is commutative and $ob(\pi) \to 0$, and obstruction is independent of obstruction theory.