
Sketchy Notes: Typos are to be expected and all mistakes/inaccuracies/idiocy are the
sole responsibility of the person who wrote these notes. Nothing here is original.
0.1 Dimension and Smoothness of BunG. Our goal is to explain the proof of the
following theorem. Throughout, X is a projective algebraic curve over an algebraically
closed field k = k̄ of genus g > 1 and G is a reductive algebraic group.

Theorem 0.1. The algebraic stack BunG of principle G-bundles on X is smooth and of
dimension dim(G)(g − 1).

First, let me summarize the relevant definitions used in the theorem.

Definition 0.2. An algebraic stack X is smooth if there exists a smooth atlas U → X (i.e.
the morphism U → X ) is smooth and surjective) in which U is also a smooth scheme.

As for the dimension of an algebraic stack, there are many. However, since we know that
BunG is supposed to be a very nice stack (i.e. smooth algebraic and locally of finite type) it
helps to use a less general definition which we introduce later.

Second, I shall summarize the deformation theory that will be involved in proving the
theorem.

Definition 0.3. Let X/ Spec(k) be an algebraic stack. We say X is formally smooth if
for all

T X

T ′ Spec(k)

i
∃

first order thickenings of T , there exists the map T ′ → X . Note that the lift does not need
to be unique. With more assumptions on X/k, one can make stronger assumptions on T .

Proposition 0.4 (Alper, Theorem 3.7.1). Assume f : X → Y is a locally of finite type
morphism between locally noetherian algebraic stacks with qcqs diagonals. Consider the
2-commutative diagram

Spec(A0) X

Spec(A) Y

f

of solid arrows where A → A0 is a surjection of artinian local rings with residue field k such
that ker (A → A0) ∼= k (aka we consider a first order infinitesimal thickening). Then f is
smooth if and only if there exists a lifting of every diagram as pictured above.

Remark 0.5. Let me try to describe why this is what we want. If X → Spec(k) is smooth,
then the above lifting criterion holds. Then let U → X be an atlas. The goal is to show that
U is a smooth scheme. But U → X → Spec(k) is a composition of smooth morphisms and
so U → Spec(k) is smooth. OTOH, if there is a smooth atlas U → X , and Spec(A0) → X is
given, then I can find a lift Spec(A) → U by the proposition and the composition Spec(A) →
U → X is the desired lift of Spec(A0) → X .

Proposition 0.6. Let X be a locally of finite type and locally Noetherian algebraic stack
over Spec(k) with qcqs diagonal. Then it is smooth if and only if it is formally smooth.
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Proposition 0.7. Let X0 be a scheme over k and E0 a vector bundle on X0. Let X be a
deformation of X0 over some Artin local ring R i.e. X0/R such that X0 ×k R ∼= X. Then
there exists a deformation E of E0 over R (i.e. E/R is a vector bundle such that E ⊗R k ∼= E0)
iff the obstruction class o(E0) ∈ H2(X0, EndOX0

(E0) ⊗ J) vanishes where J is the kernel
ker(R → k).

Proposition 0.8 (Upgraded Version). In the previous proposotion, instead of working with
R → k, one can work instead with R → R′ where R,R′ are both Artinian local rings with
residue fields k.

0.3 Smoothness as Vanishing of Obstruction. The idea of this proposition was
discussed 2 weeks ago. It is especially helpful here that we are working with vector bundles.
Remark: See Theorem 7.1 of Hartshorne’s Deformation Theory.

Now let us apply this proposition to prove that BunG is smooth. One can observe we do
not need the full power of the proposition.

Consider the diagram

Spec(T ) BunG

Spec(T ′)

i

Now assume Spec(T ) → BunG is given by a family ET ofG-bundles over the scheme T ......then
the obstruction class is in H2 which vanishes.
0.4 The Tangent Stack. There are notes online by Raskin which discuss the cotangent
stack and the material below – it might be a better read than what I have written here below.
Let π : U → X be a fixed atlas with U smooth (here we are assuming X is smooth). Then
the tangent sheaf TX is a vector bundle and for any test scheme S with map f : S → X , we
can consider the diagram

f ∗TU TU

S ×f,X ,π U U

S X
h π

f

Now recall that for any smooth surjective map of schemes ρ : Y → Z, there is an exact
sequence of sheaves over Y

0 → TY/Z → TY → ρ∗TZ → 0

which we can regard as saying there is a quasiisomorphism

(TY/Z → TY ) ≃ ρ∗TZ .

This will be our tool for defining the cotangent stack. To describe the tangent bundle on
Z = X , it should be the case that we try and describe some two-term complex

TU/X → TU .

Using the above diagram, we can form the exact sequence

0 → TS×f,X ,πU/S → TS → h∗TS → 0.
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The collection of TS×f,X ,πU/S with S varying over some covering to X glue together to give me
a vector bundle which I call TU/X . Varying the S over some covering, the TS glue together
to give me TU . The collection of morphisms then descend to a morphism TU/X → TU .
Now, we remark that there is nothing special about choosing the atlas U . We could have

replaced U by some covering of U and hence, a covering of X . So altogether, TU/X makes
sense for any U → X in the smooth site over X .

Definition 0.9. The tangent stack of X is the functor that associates to each U → X in
the smooth site to the two-term complex

TU/X → TU

of quasicoherent sheaves over U concentrated in degrees −1 and 0. That this gives a functor
valued in groupoids is explained in the next paragraph.

To each two-term complex · · · → A−1 → A0 → . . . one can form a groupoid h1/h0 as

follows. Its objects are elements of A0 and the morphisms x
∼
y are given by those v ∈ A−1

such that dv = y − x where v ∈ A−1. So for example, an x ∈ A0 has an automorphism for
every v ∈ A−1 with the property dv = x− x = 0.

Definition 0.10. If S → X is a S-smooth point of X , then set dimS(X ) := rank(TS) −
rank(TS/X ). When X is a smooth algebraic stack, dimS(X ) is independent of S and we
denote this quantity by dim(X ). For our later computations, we will take S := Spec(k) and
let P denote the principle G-bundle on X associated to S → BunG.

0.5 Dimension of BunG. There are notes online from a talk by Victor Ginzburg on this
which are better than the notes here if one wants more details.

Theorem 0.11. TP (BunG) ∼= H1(X, gP ) while automorphisms of TP (BunG) at P are deter-
mined by H0(X, gP ).

Proof. We start with the Tannakian formalism for describing principle G-bundles.
Claim. Let G be an affine algebraic group. The data of a G-bundle on X is equivalent

to the data of a monoidal exact functor Rep(G) → Vect(X) where Rep(G) is the tensor
category of finite dimensional representations of G and Vect(X) is the tensor category of
vector bundles on X.

Proof of claim. Given a principle G-bundle P on X, we can define a functor FP :
Reg(G) → Vect(X) via FP (V ) := P ×G V . This is monoidal because one can check the
isomorphism

P ×G (V ⊗W ) ∼= (P ×G V )⊗ (P ×G W ).

locally. The functor is also exact because the associated vector bundle construction is exact.
Let F : Rep(G) → Vect(X) be a monoidal exact functor. Apply F to1 Reg(G) ⊗

Reg(G) → Reg(G) to get a commutative algebra structure on F (Reg(G)). Then take
P := SpecX(F (Reg(G))). □

1Objection! F is only defined for finite dimensional representations o what gives? Yes, but the extension
of F to all representations is uniquely determined. This has to do with the fact that any quasicoherent sheaf
is an inductive limit of coherent sheaf and representations can be viewed as quasicoherent sheaves on BG
with the coherent sheaves corresponding to those with finite dimension.
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From this theorem, we know that the tangent complex of BunG at a point P is identified
with the two -term complex

H0(gP )
0→ H1(gP ).

The dimension of BunG is equal to the Euler characteristic of this complex (concentrated in
degrees −1, 0) which is −χ(gP ). Since we assumed G was reductive at the start, we know
gP ∼= g∨P via the Killing form and this implies deg(gP ) = 0. By the Riemann-Roch Theorem

χ(gP ) = deg(gP ) + rank(gP )(1− g) = dim(G)(1− g).

There are two steps to proving the theorem in this case. First, we describe H0(X, gP ).
In the Tannakian perspective, a section is given by a G-equivariant map α : P → g. For a
representation ρ : G → GL(V ), we get

a · {p, v} = {p, dρ(α(p)) · v}
where dρ is the derivative of the representation map at the identity and {p, v} ∈ V ×G P . In
this way,w e can describe a section a of gP as the data of aV ∈ End(VP ) for each V ∈ Rep(G)
s.t.

aV×W = aV ⊗ IdWP
+ IdVP

⊗aW .

Fact: The work from above actually gives a map of bundles

ϕV : gP → End(VP ).

To get a Tannakian description of e ∈ H1(X, gP ), we associate eV ∈ H1(X,End(VP ))
using ϕV . The latter describes extensions of VP by itself.

Altogether

H1(X, gP ) =


functor from Reg(G) to equivalence classes of short exact sequences

V → eV where eV : 0 → VP → V̂P → VP → 0 and
this satisfies eV⊗W = eV ⊗WP + VP ⊗ eW .


To prove the theorem, we need to determine that TP (BunG) gives this same data. It is

not hard to see that

P ∈ TP (BunG)(S) =

{
Exact functors Rep(G) → Vect(X ×D × S) given by V → VP̃

such that P ×D Spec(k) = P and VP̂ ⊗WP̂ = (V ⊗W )P̂ .

}
When S = Spec(k) and P = P , computing the Baer sum, the condition on eV⊗W translates
into the condition on VP̂ ⊗ WP̂ . Therefore, P ∈ TP (BunG)(Spec(k)) corresponds to some
e ∈ H1(X, gP ).

If one keeps track of the automorphisms of each extension class in H1(X, gP ) and the
automorphisms of TP (BunG), one can check that the automorphisms of P are precisely
H0(X, gP ).
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