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Motivation: Infinitesimal Lifting

Theorem (Infinitesimal Lifting Property)

Let Spec(A) be smooth of finite type over k ,
f : Spec(B) → Spec(A) be a morphism of k-schemes, and Y ′ be a
scheme such that Spec(B) is a closed subscheme defined by a
nilpotent ideal sheaf. Then there exists a morphism
f ′ : Y ′ → Spec(A) such that f ′|Spec(B) = f .

Remarks

1. Exercise: Y ′ above is actually affine.
2. To rephrase: If Spec(A) is a smooth affine scheme and B ′ ↠ B
is a “nilpotent thickening” as above, then the natural map
Hom(A,B ′) → Hom(A,B) is surjective. All that follows explores
this interpretation.



Proof of Infinitesimal Lifting: Preliminaries

Consider the following diagram:

0 I B ′ B 0

A
∃?

f

Lemma (Exercise). If any lift θ of f exists, and δ : A → I is a
k-derivation, then θ + δ is another such lift. Conversely, if θ1,2 are
two lifts, then θ1 − θ2 is a k-derivation.

Thus the set of possible lifts is either empty or has a simply
transitive action by HomA(ΩA/k , I ) (independent of smoothness).

Claim (Exercise). It is enough to show the theorem in the case
I 2 = 0.



Proof of Infinitesimal Lifting: Main Construction

Now there exists a polynomial ring P with a surjection P ↠ A and
a map h : P → B ′. These fit into a commutative diagram:

0 I B ′ B 0

0 J P A 0

h f

Thus h|J sends J to I ; as I 2 = 0, h|J factors through J/J2. Call
this map (of P-modules) h. Both of these also have a compatible
A-module structure.



Proof of Infinitesimal Lifting: Smoothness

Now: J/J2 is the conormal sheaf of Spec(A) in Spec(P).
As A is smooth, we have an exact sequence of A-modules (in
general, it is only right-exact):

0 J/J2 ΩP/k ⊗P A ΩA/k 0

Taking the associated long exact sequence to HomA(−, I ), we see
that Hom(ΩP/k ⊗ A, I ) → Hom(J/J2, I ) is surjective if
Ext1(ΩA/k , I ) = 0. But this is the case because A is smooth, so
every map g : J/J2 → I lifts to Hom(ΩP/k ⊗ A, I ). As the A and
P-module structures on I agree,
Hom(ΩP/k ⊗ A, I ) = HomP(ΩP/k , I ).



Proof of Infinitesimal Lifting: Conclusion and Remarks

In particular, h : J/J2 → I lifts to a k-derivation θ : P → I . Recall
h came from a ring homomorphism h : P → B ′. The conclusion
follows from

Claim (Exercise). h − θ : P → B is a ring homomorphism that
descends to A and lifts f .

Remarks.

1. We see the action of HomA(ΩA/k , I ) in the choice of lift for h.
By the first lemma, the resulting lifts are independent of P.

2. We want to extend this to deformation functors: how does a
deformation functor behave under nilpotent thickenings? This is
partially answered by tangent-obstruction theories: the
“obstruction” detects when a lift is possible and the “tangent”
parametrizes lifts. The idea is that a functor “is” smooth when
lifting is possible, i.e. the obstruction vanishes.



Tangent-Obstruction Theories

Let D : Art lock → Set be a deformation functor.

A small extension in Art lock is a surjection p : B → A with
ker(p) := M one-dimensional over k .

Definition

A tangent-obstruction theory for D is a pair (T 1,T 2) of f.d.
k-vector spaces satisfying:

For any small extension, there is a functorial exact sequence

T 1 ⊗M D(B) D(A) T 2 ⊗Mob

ob(a) = 0 iff a lifts to D(B).

If a lifts, there is a transitive action of T 1 ⊗M on the set of
lifts.

If A = k , the action is simply transitive.



Example 1: Complete Local k-algebra

Proposition.

Let S be a complete Noetherian local k-algebra such that
dimk(mS/m

2
S) = d and let p : k[[x1, ..., xd ]] → S be a surjection

(exercise: this always exists) with kernel J. Let
T 1 := HomS(mS/m

2
S , k), T

2 := HomS(J/mSJ, k). Then (T 1,T 2)
is a tangent-obstruction theory for hS := Hom(S ,−).

Proof in the notes (discussion after Definition 2.7).

Remarks.

1. Recall that any such an S is smooth iff it is isomorphic to
k[[x1, ..., xd ]] – exactly when T 2 vanishes. Hence “obstruction”.

2. Notice that T 1 is the tangent space of S . This is not a
coincidence; it follows from considering A = k (i.e.,
T 1 = D(k[ϵ]/(ϵ2))). Hence “tangent”.



Example 2: Smooth Proper Schemes

Proposition.

Let X be a smooth proper scheme. Let D be the functor that
sends A ∈ Art lock to the set of XA, flat over A, with fixed
isomorphism φA : XA ×A k ≃ X . Then T i := H i (X ,TX ) is a
tangent-obstruction theory for D.

We first study the deformations of affine schemes X (i.e. instead
of smooth proper X , consider smooth affine X ). The idea is to
patch these together to deduce the general case.

Lemma.

Let D be as above with X affine. Then X ′ ∈ D(A) is the trivial
deformation X × Spec(A).



Example 2: Smooth Proper Schemes. Proof of Lemma

By the infinitesimal lifting property, the isomorphism
φ : Y ′ ×A k ≃ Y lifts to a morphism φ′ : Y ′ → Y . Note that
inverting φ and composing with the projection Y ′ × A → Y ′ gives
a morphism i : Y → Y ′ such that φ′ ◦ i = id . Translating to ring
theory terms, is φ′ gives a splitting for the extension R ′ ↠ R.



Example 2: Smooth Proper Schemes, T 1

We now identify T 1 and T 2 for D. Cover X (smooth, proper) by
affines Ui . We are interested in schemes X ′ over k(ϵ)/(ϵ2)
together with a fixed isomorphism φ : X ′ ×k(ϵ)/(ϵ2) k ≃ X . We

want to glue from affines U ′
i over k(ϵ)/(ϵ

2). By the lemma, we
have fi : U

′
i ≃ Ui × k(ϵ)/(ϵ2), where we can change trivialization

by AutUi
(U ′

i ) = Γ(Ui ,Ui × (ϵ)) = H0(Ui ,TUi
). On overlaps we

have transition functions gij . They are compatible exactly when
they satisfy a cocycle condition. If they do, this defines a Čech
1-cocycle. Hence, T 1 = H1(X ,TX ).



Example 2: Smooth Proper Schemes, T 2

We see that no global lift exists if the gij do not satisfy a cocycle
condition; it can be off by a 2-cocycle. Thus H2(X ,TX ) is a
candidate for T 2. Observe that the above argument goes through
over any base A ∈ Art lock with B → A a small extension with the
difference that AutUi

(U ′
i ) = H0(Ui ,Ui ×M). Globalizing and

applying the projection formula (the M × Ui glue to a vector
bundle over X ) identifies the obstruction class as lying in
H2(X ,TX )⊗M (details are in the notes, Theorem 3.4).



Example 3: Coherent Sheaves (Vector Bundles)

Proposition.

Let X be a smooth proper scheme and E be a coherent sheaf
(vector bundle) on X . Let D be the functor that sends A ∈ Art lock

to the set of coherent sheaves (vector bundles) EA on X × A, flat
over A, with a fixed isomorphism φA : EA ⊗A k ≃ E . Then
T i := Ext i (E , E), i = 1, 2 is a tangent-obstruction theory for D.

Dima proved this last time for vector bundles. The argument is
similarly by patching trivial deformations. Dima also proved that
Ext1(E , E) was the tangent space of D.

In general, Ext2(E , E) being the obstruction space relies on deeper
homological techniques because we can’t appeal to local triviality.



Application to Moduli Spaces

Corollary.

Let C be a smooth projective curve of genus g . The moduli space
of smooth curves of genus g , Mg (g ≥ 2), is smooth at [C ]. The
tangent space to Mg at a curve [C ] is identified with
H1(C ,TC ) = H0(C , (Ω1

C )
⊗2)∗ (Serre duality), which has

dimension (4g − 4) + 1− g = 3g − 3 (Riemann-Roch).

Corollary.

Let X be a smooth projective curve of genus g ≥ 2. For a stable
rank-n vector bundle E , the moduli space of stable rank-n vector
bundles on X is smooth at [E ] and has tangent space
H1(X , End(E)) = H0(X , End(E)⊗ KX )

∗ at E , which has
dimension n2(g − 1) + 1 (Riemann-Roch for vector bundles).



Pro-representability, Formal Smoothness, and Hulls

Definition.

A morphism of deformation functors α : F → G is (formally)
smooth if for B → A a small extension we have
F (B) → F (A)×G(A) G (B) is surjective.

Definition.

A deformation functor D is pro-representable if there exists a
complete Noetherian local k-algebra R and an isomorphism
D ≃ Hom(R,−).

Definition.

A hull for D is a complete Noetherian local k-algebra R and a
smooth morphism α : Hom(R,−) → D which is bijective on
k(ϵ)/(ϵ)2.



Baby Schlessinger

Theorem.

A hull exists for D iff D has a tangent-obstruction theory T 1,2
D , and

furthermore, D is pro-representable iff

0 → T 1
D ⊗M → D(B) → D(A) → T 2

D ⊗M

is left-exact for all small extensions B → A.

Proof (sketch). For the second part, we need to show that the
surjection hS(B) → hS(A)×D(A) D(B) is a bijection. But if the
tangent-obstruction sequence is left-exact, T 1

D ⊗M acts simply
transitively on lifts from D(A) and this is identified with T 1

S ⊗M
(the bijection on tangent spaces guarantees this). This in turn
implies the second part.



Proof of Baby Schlessinger

hS := Hom(S ,−) has T 1
S = (mS/m

2
S)

∗,T 2
S = (J/mSJ)

∗ a
tangent-obstruction theory. Pick S smooth with T 1

S ≃ T 1
D .

0 T 1
S ⊗M hS(B) hS(A) 0

T 1
D ⊗M D(B) D(A) T 2

D ⊗M

T 1
S ⊗M acts transitively on lifts from D(A) in D(B) while it acts

simply transitively on lifts from hS(A) in hS(B). This defines a
surjection hS(B) → D(B)×D(A) hS(A). Taking A = k and
composing small extensions defines surjections hS(B) → D(B) for
all B, hence a morphism. Since we have this for all small
extensions, such an S defines a hull for D.



Looking Ahead

We will first be interested in representability and smoothness
properties of deformation functors. The first major result is
Schlessinger’s criteria for pro-representability/hulls (which is
closely related to the “Baby Schlessinger” result above).

If we have some pro-representability result, we are interested
in extending it to something global. There is a nice example
of this in the notes with an application to Picard groups
(Theorem 2.14). Artin’s paper “Algebraization of Formal
Moduli I” provides some very general theory.



Thank you!


