SECOND ANNUAL UW MADISON UNDERGRADUATE MATH COMPETITION

1. Find all pairs of positive integers (a, b) such that

$$
a^{b}=b^{a} .
$$

2. Prove that the integral

$$
\int_{0}^{\infty} \cos \left(t^{3}\right) d t
$$

converges. (In other words, that the limit

$$
\lim _{x \rightarrow+\infty} \int_{0}^{x} \cos \left(t^{3}\right) d t
$$

exists.)
3. Find a simple general formula for the expression

$$
a_{n}=1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+n \cdot n!
$$

4. Let A be an $n \times n$ matrix with real entries. Suppose that $A^{k}=A^{m}$ for some positive integers $k \neq m$. Show that

$$
-n \leq \operatorname{tr}(A) \leq n .
$$

(Recall that $\operatorname{tr}(A)$ is the sum of A 's diagonal entries.)
5. $f(x)$ is a differentiable function satisfying the following conditions:

$$
\begin{array}{ll}
0<f(x)<1 & \text { for all } x \text { on the interval } 0 \leq x \leq 1 \\
0<f^{\prime}(x)<1 & \text { for all } x \text { on the interval } 0 \leq x \leq 1
\end{array}
$$

How many solutions does the equation

$$
\underbrace{f(f(f \ldots f}_{2016 \text { times }}(x) \ldots)=x
$$

have on the interval $0 \leq x \leq 1$?
(Two more problems on the next page.)
6. Let p be a prime number. Suppose $\vec{v}_{1}, \ldots \vec{v}_{p+2}$ are $p+2$ planar vectors with integer components. Given two of the vectors \vec{v}_{i}, \vec{v}_{j}, we let $A\left(\vec{v}_{i}, \vec{v}_{j}\right)$ be the area of the parallelogram spanned by them; recall that it is given by the formula

$$
A\left(\vec{v}_{i}, \vec{v}_{j}\right)=\left|x_{i} y_{j}-y_{i} x_{j}\right| \quad \text { for } \quad \overrightarrow{v_{i}}=\left\langle x_{i}, y_{i}\right\rangle, \quad \overrightarrow{v_{j}}=\left\langle x_{j}, y_{j}\right\rangle .
$$

Prove that there are i and j such that $1 \leq i \leq p+2,1 \leq j \leq p+2, i \neq j$, and p divides $A\left(\vec{v}_{i}, \vec{v}_{j}\right)$.
7. N points are chosen randomly on the unit circle $x^{2}+y^{2}=1$. What is the probability that the convex polygon with vertices at these N points (their convex hull) contains the origin?

