FOURTH ANNUAL UW MADISON UNDERGRADUATE MATH COMPETITION

1. Angela flips a fair coin 2018 times and Bert flips a fair coin 2017 times. What is the probability that Angela had more tails than Bert?
2. Consider a set S and a binary operation \#, i.e., for each $a, b \in S, a \# b \in S$. Assume $(a \# b) \# a=b$ for all $a, b \in S$. Prove that $a \#(b \# a)=b$ for all $a, b \in S$.
3. Let n be an odd positive integer. Show that the sum

$$
1^{n}+2^{n}+\cdots+n^{n}
$$

is divisible by n^{2}.
4. Each of the six faces of a die is marked with an integer, not necessarily positive. The die is rolled 1000 times. Show that there is a time interval such that the product of all rolls in this interval is a cube of an integer. (For example, it could happen that the product of all outcomes between 5th and 20th throws is a cube; obviously, the interval has to include at least one throw!)
5. For which real numbers c does the inequality

$$
e^{c x^{2}} \geq \frac{e^{x}+e^{-x}}{2}
$$

hold for all real x ?
6. Let b_{n} be the sequence of all positive integers such that the decimal expression for $\frac{1}{b_{n}}$ terminates in an odd digit:

$$
1,2,4,8,10, \ldots
$$

(For instance, 3 is not included because $\frac{1}{3}=0.33 \ldots$ does not terminate, 4 is included because $\frac{1}{4}=0.25$ terminates in 5 , which is odd; 5 is not included because $\frac{1}{5}=0.2$ terminates in 2 , which is even.)

Find

$$
\sum \frac{1}{b_{n}}
$$

7. Compute

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} \arctan \left(\frac{1+x^{2}}{1+y^{2}}\right) d x d y
$$

