SEVENTH ANNUAL UW MADISON UNDERGRADUATE MATH COMPETITION

1. Let f be a bijection of a finite set X. Prove that the number of sets $A \subseteq X$ such that $f(A)=A$ is the integer power of 2 .
Hint: Among all nonempty subsets A of X such that $f(A)=A$, the minimal ones form a partition of X.
2. Let

$$
I(x)=\int_{0}^{\pi / 2} \sin ^{x} t d t, \quad \text { for } \quad x>0
$$

Prove that for $x>1$, the function $f(x)=x I(x) I(x-1)$ is periodic.
Hint: Use integration by parts to show $x I(x)=(x-1) I(x-2)$. Then prove the function $f(x)$ satisfies $f(x)=f(x-1)$.
3. Prove that there do not exists integers m, n, r such that $n(n+1)(n+2)=m^{r}$ and $n \geq 1, r \geq 2$.
Hint: Using the fact that $n+1$ is relatively prime to $n(n+2)$ to show that if $n(n+1)(n+$ $2)=m^{r}$, then $n+1=m_{1}^{r}$ and $n(n+2)=m_{2}^{r}$ for some positive integers m_{1} and m_{2}. Then deduce that $m_{2}<m_{1}^{2}<m_{2}+1$, and hence a contradiction.
4. We are given a system of 10 linear equations in 50 variables x_{1}, \ldots, x_{50} :

$$
\begin{gathered}
a_{1,1} x_{1}+a 1,2 x_{2}+a_{1,3} x_{3}+\cdots+a_{1,50} x_{50}=0 \\
\cdots \\
a_{10,1} x_{1}+a_{10,2} x_{2}+a_{10,3} x_{3}+\cdots+a_{10,50} x_{50}=0
\end{gathered}
$$

Here all coefficients $a_{i, j}$ are two-digit numbers (in particular, positive integers). Show that there exists an integer solution x_{1}, \ldots, x_{50} that is non-trivial (that is, not all x_{i} are zero) and such that $\left|x_{i}\right|<10$.

Hint: First, plug in all possible $x_{i}=-4,-3, \ldots, 4$ to the 10 linear functions. Using pigeonhole principle to prove that there are two different sets of such $x_{i}^{\prime} s$ on which the 10 linear functions have the same values. Then the difference of the two sets of numbers gives a desired solution to the 10 equations.
5. Suppose that the continuous on $[0,1]$ function f is positive at interior points and vanishes at the ends. Show that there exists a square whose two vertices lie on the x-axis, and the other two on the graph $y=f(x)$.
Solution: The problem is equivalent to find a number $a \in(0,1)$ such that $f(a+f(a))=$ $f(a)$. Here we can assume $f(x)=0$ for $x>1$. Consider the function $F(x)=f(x+f(x))-$ $f(x)$. By extreme value theorem, there exists a number $c \in[0,1]$ such that $f(x)$ achieves maximum value at c. By assumption, $c \in(0,1)$. Therefore, $F(c) \leq 0$. Since $x+f(x)$ is continuous and has value 0 at 0 , value 1 at 1 , by intermediate value theorem, there exists

[^0]$b \in(0,1)$ such that $b+f(b)=c$. Then $F(b) \leq 0$. Now, by intermediate theorem, $F(x)=0$ must have a solution between b and c, and hence a solution in $(0,1)$.
6. Let A be an $n \times n$ matrix, with entries chosen independently at random. The random law used to choose each entry of A may differ between entries. Show that if, for each column of A, the expected value of the sum of its entries is 0 , then the expected value of $\operatorname{det}(A)$ is 0 .
Solution: Let $a_{i j}$ be the entry in row i column j of A. Let $e_{i j}$ be the expected value of this entry and let $E=\left(e_{i j}\right)$ be the matrix of expectations. The permutation expansion of $\operatorname{det}(A)$ gives that,
$$
\operatorname{det} A=\sum_{\sigma \in \operatorname{Sym}(n)} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} \cdot \ldots \cdot a_{n, \sigma(n)}
$$

Since the $a_{i j}$ are chosen independently,

$$
\mathbb{E}[\operatorname{det} A]=\sum_{\sigma \in \operatorname{Sym}(n)} \operatorname{sgn}(\sigma) \mathbb{E}\left[a_{1, \sigma(1)}\right] \cdot \ldots \cdot \mathbb{E}\left[a_{n, \sigma(n)}\right]=\operatorname{det}(E)
$$

Since the expected value of the sum of the entries in each column is zero, linearity of expectation implies that the sum of entries in each column of E is 0 . In other words, the sum of the rows in E, is zero and so the rows do not form a basis implying that $\operatorname{det}(E)=0$.

[^0]: Date: April 15, 2023.

