1. Find the nonnegative integer a < 28 which is represented by the following pairs

(a) (0,0)	(b)(1,1)
(c) (2, 1)	(d) (3,5)

where each pair (κ, ℓ) represents the system of congruences

 $\left. \begin{array}{l} a \equiv \kappa \mod 4 \\ a \equiv \ell \mod 7 \end{array} \right\}.$

2. Using Fermat's little theorem show that if n is a positive integer, $n^7 \equiv n \mod 42$.

Note: Fermat's little theorem will be stated and proved next Tuesday in class. It states that $a^{p-1} \equiv 1 \mod p$ for any prime p and any integer a so that $p \nmid a$. Equivalently $a^p \equiv a \mod p$ for any integer a.

3. Let $m_1, m_2 > 1$. Show that the system of linear congruences

 $\left.\begin{array}{ll} x \equiv a \mod m_1 \\ x \equiv b \mod m_2 \end{array}\right\}$

has solutions for any integers a and b if, and only if, m_1 and m_2 are relatively prime.

- 4. Let $\varphi(m) = \{1 \le k < m / \gcd(k, m) = 1\}$ be Euler's function. Show that:
 - (a) For any prime p and any integer $\kappa \ge 1$, $\varphi(p^{\kappa}) = p^{\kappa-1}(p-1)$.
 - (b) Use the multiplicative property of φ to prove that if $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k}$ is the prime factorization of m, then

$$\varphi(m) = m\left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_k}\right).$$

(c) Use (b) to show that, in particular, for any integer $\kappa \ge 1$, $\varphi(m^{\kappa}) = m^{\kappa-1}\varphi(m)$.

Note: Recall that φ being multiplicative means that $\varphi(n \cdot m) = \varphi(n) \cdot \varphi(m)$ if $m, n \ge 1$ are relatively prime.

5. Let p and q be two different primes, put m = pq and suppose that $r \equiv 1 \mod (p-1)$ and $r \equiv 1 \mod (q-1)$. Show that for any integer a,

$$a^r \equiv a \mod m.$$