Algebra and Algebraic Geometry Seminar Fall 2021: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
(Created page with "The Virtual Seminar will take place on Fridays at 2:30 pm via Zoom. We will also link to relevant or interesting Zoom talks outside of the seminar. ==Algebra and Algebraic Ge...")
 
No edit summary
 
(43 intermediate revisions by 6 users not shown)
Line 1: Line 1:
The Virtual Seminar will take place on Fridays at 2:30 pm via Zoom. We will also link to relevant or interesting Zoom talks outside of the seminar.
This is the schedule for Fall 2021; here is [[Algebra and Algebraic Geometry Seminar|the current schedule]].


The Seminar will take place on Fridays at 2:30 pm, either virtually (via Zoom) or in person, in room B235 Van Vleck.
==Algebra and Algebraic Geometry Mailing List==
==Algebra and Algebraic Geometry Mailing List==
*Please join the AGS mailing list by sending an email to ags+join@g-groups.wisc.edu to hear about upcoming seminars, lunches, and other algebraic geometry events in the department  (it is possible you must be on a math department computer to use this link).
*Please join the AGS mailing list by sending an email to ags+join@g-groups.wisc.edu to hear about upcoming seminars, lunches, and other algebraic geometry events in the department  (it is possible you must be on a math department computer to use this link).
Line 8: Line 9:
we will have to use a different meeting link, if Michael K cannot host that day).
we will have to use a different meeting link, if Michael K cannot host that day).


== Spring 2021 Schedule ==
== Fall 2021 Schedule ==


{| cellpadding="8"
{| cellpadding="8"
Line 14: Line 15:
!align="left" | speaker
!align="left" | speaker
!align="left" | title
!align="left" | title
!align="left" | link to talk
!align="left" | host/link to talk
 
|-
|September  24
|Michael Kemeny (local, in person)
|The Rank of Syzygies
|
|
|-
|September  24|
|
|
|
|-
|October  1
|Michael K Brown (Auburn University)
|Tate resolutions as noncommutative Fourier-Mukai transforms
|
|Daniel
|-
|-
|January 29
|October  8
|[https://sites.math.northwestern.edu/~nir/ Nir Avni (Northwestern)]
|Yi (Peter) Wei (local)
|[[#Nir Avni| First order rigidity for higher rank lattices]]
|Geometric Syzygy Conjecture in char p, with reveries from Ogus’ result on a versal deformation of K3 surfaces
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|
 
|Michael
|-
|-
|February 12
|October  15
|[https://sites.google.com/site/aprodupage/ Marian Aprodu (Bucharest)]
|Michael Perlman (Minnesota; virtual)
|[[#Marian Aprodu| Koszul modules, resonance varieties and applications]]
|Mixed Hodge structure on local cohomology with support in determinantal varieties
[https://drive.google.com/file/d/1FCSQNOHbVaht7I1ubdg2ktTPqGO7joU6/view?usp=sharing Slides from talk]
|
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|Daniel
|-
|-
|February 19
|October  22
|[https://www.dhruvrnathan.net/ Dhruv Ranganathan (Cambridge)]
|Ritvik Ramkumar (UC Berkeley)
|[[#Dhruv Ranganathan| Logarithmic Donaldson-Thomas theory
|Something about Hilbert schemes, probably
]]
|
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|Daniel
|-
|-
|February 26
|October  29
|[http://people.math.harvard.edu/~engel/ Philip Engel (UGA)]
|CA+ meeting [ https://www-users.cse.umn.edu/~cberkesc/CA/CA2021.html]
|[[#Philip Engel| Compact K3 moduli]]
|
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|
|
|-
|-
|March 5
|November  5
|[https://folk.uib.no/st00895/ Andreas Knutsen (University of Bergen)]
 
|[[#Andreas Knutsen| Genus two curves on abelian surfaces]]
 
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
 
|
|-
|-
|March 12
|November 12 -- TALK AT NONSTANDARD TIME
|[http://individual.utoronto.ca/groechenig/ Michael Groechenig (University of Toronto)]
|Jinhyung Park at 9:00am (Zoom)
|[[#Michael Groechenig| Rigid local systems]]
|Asymptotic vanishing of syzygies of algebraic varieties
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|
|
|-
|-
|March 19
|November 12
|[https://personal-homepages.mis.mpg.de/agostini/ Daniele Agostini (MPI Leipzig)]
|Daniel Erman at usual time (2:30pm)
|[[#Daniele Agostini| Effective Torelli theorem]]
|The geometry of virtual syzygies
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|
|
|-
|-
|March 26
|November  19
|[https://www.mathematik.hu-berlin.de/~farkas/ Gavril Farkas (Humboldt-Universitaet zu Berlin)]
|Ritvik Ramkumar (UC Berkeley; Zoom)
|[[#Gavril Farkas| The Kodaira dimension of the moduli space of curves: recent
|Rational singularities of nested Hilbert schemes.
progress on a century-old problem.]]
|
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|Daniel
|-
|-
|April 9
|November  26
|[http://web.stanford.edu/~hlarson/ Hannah Larson (Stanford)]
|Thanksgiving
|[[#Hannah Larson| The rational Chow rings of M_7, M_8, and M_9]]
|
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|
|
|-
|-
|April 16
|December  3
|[http://www.personal.psu.edu/eus25/ Eyal Subag (Bar Ilan - Israel)]
|Eric Ramos
|[[#Eyal Subag| Algebraic symmetries of the hydrogen atom]]
|Equivariant log-concavity
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|
|
|
|-
|-
|April 23
|December  10
|[https://sites.google.com/view/gurbir-dhillon/home Gurbir Dhillon (Yale)]
|Federico Barbacovi (University College London; Zoom)
|[[#Gurbir Dhillon| The Drinfeld--Sokolov reduction of admissible representations of affine Lie algebras]]
|Categorical dynamical systems and Gromov—Yomdin type theorems
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|
|Andrei
|-
|-
|April 30
|April 8
|[https://ivganev.github.io Iordan Ganev (Weizmann)]
|Haydee Lindo
|[[#Iordan Ganev| The QR decomposition for radial neural networks]]
|
|[https://uwmadison.zoom.us/j/9502605167 Zoom link]
|
|Daniel
|-
|-
|}
|}
Line 85: Line 113:


===Speaker Name===
===Speaker Name===
Title:  
===Michael Kemeny===
Title: The Rank of Syzygies
 
Abstract: I will explain a notion of ''rank'' for the relations amongst the equations of a projective variety. This notion generalizes the classical notion of rank of a quadric and is just as interesting!
I will spend most of the talk developing this notion but will also explain one result which tells us that, for a randomly chosen canonical curve, you expect all the linear syzygies to have the lowest possible
rank. This is a sweeping generalization of old results of Andreotti-Mayer, Harris-Arbarello and Green, which tell us that canonical curves are defined by quadrics of rank ''four''.
 
===Michael Brown===
Title: Tate resolutions as noncommutative Fourier-Mukai transforms
 
Abstract: This is joint work with Daniel Erman. The classical Bernstein-Gel'fand-Gel'fand (or BGG) correspondence gives an equivalence between the derived categories of a polynomial ring and an exterior algebra. It was shown by Eisenbud-Fløystad-Schreyer in 2003 that the BGG correspondence admits a geometric refinement, which sends a sheaf on projective space to a complex of modules over an exterior algebra called a Tate resolution. The goal of this talk is to reinterpret Tate resolutions as noncommutative analogues of Fourier-Mukai transforms, and to discuss some applications.
 
===Peter Wei===
Title: Geometric Syzygy Conjecture in char p, with reveries from Ogus’ result on a versal deformation of K3 surfaces
 
Abstract: We aim to study syzygies of canonical curves in char p. I will briefly introduce how to translate the questions on curves to questions on K3 surfaces, where the Lazarsfeld-Mukai bundle plays a great role. I will show how to use Ogus’ result on a versal deformation of K3 surfaces, to help us resolve the case for a general K3 surface. And finally, I will sketch the proof of Geometric Syzygy Conjecture for even genus curve assuming an effective lower bound on the characteristics.
 
===Michael Perlman===
Title: Mixed Hodge structure on local cohomology with support in determinantal varieties
 
Abstract: Given a closed subvariety Z in a smooth complex variety, the local cohomology modules with support in Z are functorially endowed with structures as mixed Hodge modules, implying that they are equipped with Hodge and weight filtrations that subtly measure the singularities of Z. We will discuss new calculations of these filtrations in the case when Z is a generic determinantal variety. As an application, we obtain the Hodge ideals for the determinant hypersurface. Joint work with Claudiu Raicu.
 
===Jinhyung Park===
Title: Asymptotic vanishing of syzygies of algebraic varieties
 
Abstract: In this talk, we show Ein-Lazarsfeld's conjecture on asymptotic vanishing of syzygies of algebraic varieties. This result, together with Ein-Lazarsfeld's asymptotic nonvanishing theorem, describes the overall picture of asymptotic behaviors of the minimal free resolutions of the graded section rings of line bundles on a projective variety as the positivity of the line bundles grows.
 
===Daniel Erman===
Title: The geometry of virtual syzygies
 
Abstract:  One of the foundational results connecting syzygies with algebraic geometry properties was Mark Green’s result on N_p conditions for smooth curves of high degree.  A modern and streamlined proof of this result comes via Green’s Linear Syzygy Theorem.  I will discuss very recent work with Michael Brown which proves a Multigraded Linear Syzygy Theorem and uses this to obtain the first known examples of “virtual" N_p conditions for smooth curves of high degree in other toric varieties.  This is joint work with Michael Brown.
 
===Ritvik Ramkumar===
Title: Rational singularities of nested Hilbert schemes.
 
Abstract: For a smooth surface S the Hilbert scheme of points S^(n) is a well studied smooth parameter space. In this talk I will consider a natural generalization, the nested Hilbert scheme of points S^(n,m) which parameterizes pairs of 0-dimensional subschemes X \supseteq Y of S with deg(X) = n and deg(Y) = m. In contrast to the usual Hilbert scheme of points, S^(n,m) is almost always singular and it is known that S(n,1) has rational singularities. I will discuss some general techniques to study S^(n,m) and apply them to show that S^(n,2) also has rational singularities. This relies on a connection between S^(n,2) and a certain variety of matrices, and involves square-free Gröbner degenerations as well as the Kempf-Weyman geometric technique. This is joint work with Alessio Sammartano.
 
===Eric Ramos===
Tite: Equivariant log-concavity
 
Abstract: Log concave sequences have been ubiquitous in combinatorics for decades. For instance, June Huh famously proved that the Betti numbers of the complement of a complex hyperplane arrangement always form a log concave sequence. In this talk I will introduce an equivariant version of log concave sequences for representations of groups, and present a conjecture of Nick Proudfoot on such sequences arising from hyperplane arrangements. I will then show that one can use a numerical version of representation stability to prove infinitely many cases of this conjecture for configuration spaces. This is joint work with Jacob Matherne, Dane Miyata, and Nick Proudfoot.
 
===Federico Barbacovi===
Title: Categorical dynamical systems and Gromov—Yomdin type theorems


Abstract:
Abstract: Categorical dynamical systems were introduced by Dimitrov—Haiden—Katzarkov—Kontsevich to give a categorification of topological dynamical systems. To every categorical dynamical system one can associate its entropy, which measures the complexity of the system. While in the topological world this measure is given by a number, in the categorical world the entropy is a function. The value at zero of this function takes the name of categorical entropy and mirrors the role of the topological entropy. In this talk I will report on joint work with Jongmyeong Kim in which we investigate a categorical version of a theorem of Gromov and Yomdin and we propose a categorical interpretation of one of the properties of holomorphic functions. Such interpretation allows us to give a sufficient condition for a categorified version of Gromov—Yomdin’s theorem to hold.

Latest revision as of 00:07, 16 February 2022

This is the schedule for Fall 2021; here is the current schedule.

The Seminar will take place on Fridays at 2:30 pm, either virtually (via Zoom) or in person, in room B235 Van Vleck.

Algebra and Algebraic Geometry Mailing List

  • Please join the AGS mailing list by sending an email to ags+join@g-groups.wisc.edu to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).

COVID-19 Update

As a result of Covid-19, the seminar for this semester will be a mix of virtual and in-person talks. The default Zoom link for the seminar is https://uwmadison.zoom.us/j/9502605167 (sometimes we will have to use a different meeting link, if Michael K cannot host that day).

Fall 2021 Schedule

date speaker title host/link to talk
September 24 Michael Kemeny (local, in person) The Rank of Syzygies
October 1 Michael K Brown (Auburn University) Tate resolutions as noncommutative Fourier-Mukai transforms Daniel
October 8 Yi (Peter) Wei (local) Geometric Syzygy Conjecture in char p, with reveries from Ogus’ result on a versal deformation of K3 surfaces Michael
October 15 Michael Perlman (Minnesota; virtual) Mixed Hodge structure on local cohomology with support in determinantal varieties Daniel
October 22 Ritvik Ramkumar (UC Berkeley) Something about Hilbert schemes, probably Daniel
October 29 CA+ meeting [ https://www-users.cse.umn.edu/~cberkesc/CA/CA2021.html]
November 5


November 12 -- TALK AT NONSTANDARD TIME Jinhyung Park at 9:00am (Zoom) Asymptotic vanishing of syzygies of algebraic varieties
November 12 Daniel Erman at usual time (2:30pm) The geometry of virtual syzygies
November 19 Ritvik Ramkumar (UC Berkeley; Zoom) Rational singularities of nested Hilbert schemes. Daniel
November 26 Thanksgiving
December 3 Eric Ramos Equivariant log-concavity
December 10 Federico Barbacovi (University College London; Zoom) Categorical dynamical systems and Gromov—Yomdin type theorems Andrei
April 8 Haydee Lindo Daniel

Abstracts

Speaker Name

Michael Kemeny

Title: The Rank of Syzygies

Abstract: I will explain a notion of rank for the relations amongst the equations of a projective variety. This notion generalizes the classical notion of rank of a quadric and is just as interesting! I will spend most of the talk developing this notion but will also explain one result which tells us that, for a randomly chosen canonical curve, you expect all the linear syzygies to have the lowest possible rank. This is a sweeping generalization of old results of Andreotti-Mayer, Harris-Arbarello and Green, which tell us that canonical curves are defined by quadrics of rank four.

Michael Brown

Title: Tate resolutions as noncommutative Fourier-Mukai transforms

Abstract: This is joint work with Daniel Erman. The classical Bernstein-Gel'fand-Gel'fand (or BGG) correspondence gives an equivalence between the derived categories of a polynomial ring and an exterior algebra. It was shown by Eisenbud-Fløystad-Schreyer in 2003 that the BGG correspondence admits a geometric refinement, which sends a sheaf on projective space to a complex of modules over an exterior algebra called a Tate resolution. The goal of this talk is to reinterpret Tate resolutions as noncommutative analogues of Fourier-Mukai transforms, and to discuss some applications.

Peter Wei

Title: Geometric Syzygy Conjecture in char p, with reveries from Ogus’ result on a versal deformation of K3 surfaces

Abstract: We aim to study syzygies of canonical curves in char p. I will briefly introduce how to translate the questions on curves to questions on K3 surfaces, where the Lazarsfeld-Mukai bundle plays a great role. I will show how to use Ogus’ result on a versal deformation of K3 surfaces, to help us resolve the case for a general K3 surface. And finally, I will sketch the proof of Geometric Syzygy Conjecture for even genus curve assuming an effective lower bound on the characteristics.

Michael Perlman

Title: Mixed Hodge structure on local cohomology with support in determinantal varieties

Abstract: Given a closed subvariety Z in a smooth complex variety, the local cohomology modules with support in Z are functorially endowed with structures as mixed Hodge modules, implying that they are equipped with Hodge and weight filtrations that subtly measure the singularities of Z. We will discuss new calculations of these filtrations in the case when Z is a generic determinantal variety. As an application, we obtain the Hodge ideals for the determinant hypersurface. Joint work with Claudiu Raicu.

Jinhyung Park

Title: Asymptotic vanishing of syzygies of algebraic varieties

Abstract: In this talk, we show Ein-Lazarsfeld's conjecture on asymptotic vanishing of syzygies of algebraic varieties. This result, together with Ein-Lazarsfeld's asymptotic nonvanishing theorem, describes the overall picture of asymptotic behaviors of the minimal free resolutions of the graded section rings of line bundles on a projective variety as the positivity of the line bundles grows.

Daniel Erman

Title: The geometry of virtual syzygies

Abstract: One of the foundational results connecting syzygies with algebraic geometry properties was Mark Green’s result on N_p conditions for smooth curves of high degree. A modern and streamlined proof of this result comes via Green’s Linear Syzygy Theorem. I will discuss very recent work with Michael Brown which proves a Multigraded Linear Syzygy Theorem and uses this to obtain the first known examples of “virtual" N_p conditions for smooth curves of high degree in other toric varieties. This is joint work with Michael Brown.

Ritvik Ramkumar

Title: Rational singularities of nested Hilbert schemes.

Abstract: For a smooth surface S the Hilbert scheme of points S^(n) is a well studied smooth parameter space. In this talk I will consider a natural generalization, the nested Hilbert scheme of points S^(n,m) which parameterizes pairs of 0-dimensional subschemes X \supseteq Y of S with deg(X) = n and deg(Y) = m. In contrast to the usual Hilbert scheme of points, S^(n,m) is almost always singular and it is known that S(n,1) has rational singularities. I will discuss some general techniques to study S^(n,m) and apply them to show that S^(n,2) also has rational singularities. This relies on a connection between S^(n,2) and a certain variety of matrices, and involves square-free Gröbner degenerations as well as the Kempf-Weyman geometric technique. This is joint work with Alessio Sammartano.

Eric Ramos

Tite: Equivariant log-concavity

Abstract: Log concave sequences have been ubiquitous in combinatorics for decades. For instance, June Huh famously proved that the Betti numbers of the complement of a complex hyperplane arrangement always form a log concave sequence. In this talk I will introduce an equivariant version of log concave sequences for representations of groups, and present a conjecture of Nick Proudfoot on such sequences arising from hyperplane arrangements. I will then show that one can use a numerical version of representation stability to prove infinitely many cases of this conjecture for configuration spaces. This is joint work with Jacob Matherne, Dane Miyata, and Nick Proudfoot.

Federico Barbacovi

Title: Categorical dynamical systems and Gromov—Yomdin type theorems

Abstract: Categorical dynamical systems were introduced by Dimitrov—Haiden—Katzarkov—Kontsevich to give a categorification of topological dynamical systems. To every categorical dynamical system one can associate its entropy, which measures the complexity of the system. While in the topological world this measure is given by a number, in the categorical world the entropy is a function. The value at zero of this function takes the name of categorical entropy and mirrors the role of the topological entropy. In this talk I will report on joint work with Jongmyeong Kim in which we investigate a categorical version of a theorem of Gromov and Yomdin and we propose a categorical interpretation of one of the properties of holomorphic functions. Such interpretation allows us to give a sufficient condition for a categorified version of Gromov—Yomdin’s theorem to hold.