Graduate Algebraic Geometry Seminar Spring 2022: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
(Create new page)
 
(Ellie's talk details)
 
(54 intermediate revisions by 5 users not shown)
Line 1: Line 1:
'''
'''
'''When:''' 5:00-6:00 PM Thursdays
'''When:''' 4:30-5:30 PM Thursdays


'''Where:''' TBD
'''Where:''' VV B231
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]
[[Image:cat.jpg|thumb|220px| | Lizzie the OFFICIAL mascot of GAGS!!]]


Line 11: Line 11:
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@g-groups.wisc.edu by sending an email to gags+subscribe@g-groups.wisc.edu. If you prefer (and are logged in under your wisc google account) the list registration page is [https://groups.google.com/u/2/a/g-groups.wisc.edu/g/gags here].
'''How:''' If you want to get emails regarding time, place, and talk topics ('''which are often assigned quite last minute''') add yourself to the gags mailing list: gags@g-groups.wisc.edu by sending an email to gags+subscribe@g-groups.wisc.edu. If you prefer (and are logged in under your wisc google account) the list registration page is [https://groups.google.com/u/2/a/g-groups.wisc.edu/g/gags here].


''' Organizers: ''' [https://johndcobb.github.io John Cobb], [https://sites.google.com/view/colincrowley/home Colin Crowley].
''' Organizers: ''' [https://johndcobb.github.io John Cobb], Yu (Joey) Luo


== Give a talk! ==
== Give a talk! ==
We need volunteers to give talks this semester. If you're interested, please fill out [https://forms.gle/sa3ARndYSkBhT6LR9 this form]. Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material. If you would like some talk ideas, see the list on the [https://hilbert.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar main page].
We need volunteers to give talks this semester. If you're interested, please fill out [https://forms.gle/iwvCQPKp3mDD3HZd9 this form]. Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material. If you would like some talk ideas, see the list on the [https://hilbert.math.wisc.edu/wiki/index.php?title=Graduate_Algebraic_Geometry_Seminar main page].


=== Fall 2021 Topic Wish List ===
=== Spring 2022 Topic Wish List ===
This was assembled using input from an interest form at the beginning of the semester. Choose one and you will have the rare guarantee of having one interested audience member. Feel free to add your own.
This was assembled using input from an interest form at the beginning of the semester. Choose one and you will have the rare guarantee of having one interested audience member. Feel free to add your own.
* Stacks for Kindergarteners
* Hilbert Schemes
* Motives for Kindergarteners
* Applications of Beilinson resolution of the diagonal, Fourier Mukai transforms in general
* Wth did June Huh do and what is combinatorial hodge theory?
* Computing things about Toric varieties
* Reductive groups and flag varieties
* Reductive groups and flag varieties
* Introduction to arithmetic geometry -- what are some big picture ideas of what "goes wrong" when not over an algebraically closed field?
* Geothendieck '66, "On the de Rham Cohomology of Algebraic Varieties"
* Geothendieck '66, "On the de Rham Cohomology of Algebraic Varieties"
* Going from line bundles and divisors to vector bundles and chern classes
* Going from line bundles and divisors to vector bundles and chern classes  
* A History of the Weil Conjectures
* A History of the Weil Conjectures
* Mumford & Bayer, "What can be computed in Algebraic Geometry?"  
* Mumford & Bayer, "What can be computed in Algebraic Geometry?"  
Line 36: Line 31:
* Ask Questions Appropriately
* Ask Questions Appropriately


==Talks==
== Talks ==
 
<center>
<center>
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"
{| style="color:black; font-size:120%" border="0" cellpadding="14" cellspacing="5"
Line 42: Line 38:
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''
| bgcolor="#D0D0D0" width="300" align="center"|'''Date'''
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''
| bgcolor="#A6B658" width="300" align="center"|'''Speaker'''
| bgcolor="#BCD2EE" width="300" align="center"|'''Title (click to see abstract)'''
| bgcolor="#BCD2EE" width="300" align="center"|'''Title'''
|-
|-
| bgcolor="#E0E0E0"| September 30
| bgcolor="#E0E0E0"| February 10
| bgcolor="#C6D46E"| Yifan Wei
| bgcolor="#C6D46E"| Everyone
| bgcolor="#BCE2FE"|[[#September 30| On Chow groups and K groups]]
| bgcolor="#BCE2FE"|[[#February 10| Informal chat session ]]
|-
|-
| bgcolor="#E0E0E0"| October 7
| bgcolor="#E0E0E0"| February 17
| bgcolor="#C6D46E"| Owen Goff
| bgcolor="#C6D46E"| Asvin G
| bgcolor="#BCE2FE"|[[#October 7 | Roguish Noncommutativity and the Onsager Algebra]]
| bgcolor="#BCE2FE"|[[#February 17| Motives ]]
|-
|-
| bgcolor="#E0E0E0"| October 14
| bgcolor="#E0E0E0"| February 24
| bgcolor="#C6D46E"| Peter Wei
| bgcolor="#C6D46E"| Yu Luo
| bgcolor="#BCE2FE"|[[#October 14 | TBD]]
| bgcolor="#BCE2FE"|[[#February 24| Riemann-Hilbert Correspondence ]]
|-
|-
| bgcolor="#E0E0E0"| October 21
| bgcolor="#E0E0E0"| March 10
| bgcolor="#C6D46E"| Asvin G
| bgcolor="#C6D46E"| Colin Crowley
| bgcolor="#BCE2FE"|[[#October 21 | Introduction to Arithmetic Schemes]]  
| bgcolor="#BCE2FE"|[[#March 10| An introduction to Tropicalization ]]
|-
|-
| bgcolor="#E0E0E0"| October 28
| bgcolor="#E0E0E0"| March 31
| bgcolor="#C6D46E"| Caitlyn Booms
| bgcolor="#C6D46E"| Ruofan
| bgcolor="#BCE2FE"|[[#October 28 | TBD]]  
| bgcolor="#BCE2FE"|[[#March 31| Motivic class of stack of finite modules over a cusp ]]
|-
|-
| bgcolor="#E0E0E0"| November 4
| bgcolor="#E0E0E0"| April 7
| bgcolor="#C6D46E"| John Cobb
| bgcolor="#C6D46E"| Alex Hof
| bgcolor="#BCE2FE"|[[#November 4 | Koszul Cohomology]]  
| bgcolor="#BCE2FE"|[[#April 7| Geometric Intuitions for Flatness]]
|-
|-
| bgcolor="#E0E0E0"| November 11
| bgcolor="#E0E0E0"| April 14
| bgcolor="#C6D46E"| Colin Crowley
| bgcolor="#C6D46E"| Caitlyn Booms
| bgcolor="#BCE2FE"| [[#November 11 | Introduction to Geometric Invariant Theory]]  
| bgcolor="#BCE2FE"|[[#April 14| Virtual criterion for generalized Eagon-Northcott complexes ]]
|-
|-
| bgcolor="#E0E0E0"| November 18
| bgcolor="#E0E0E0"| April 21
| bgcolor="#C6D46E"| Connor Simpson
| bgcolor="#C6D46E"| Connor Simpson
| bgcolor="#BCE2FE"|[[#November 18 | Combinatorial Hodge Theory]]  
| bgcolor="#BCE2FE"|[[#April 21| Symplectic geometry and invariant theory ]]
|-
|-
| bgcolor="#E0E0E0"| December 2
| bgcolor="#E0E0E0"| April 28
| bgcolor="#C6D46E"| Alex Mine
| bgcolor="#C6D46E"| Karan
| bgcolor="#BCE2FE"|[[#December 2 | Galois Descent]]  
| bgcolor="#BCE2FE"|[[#April 28| Using varieties to study polynomial neural networks ]]
|-
|-
| bgcolor="#E0E0E0"| December 9
| bgcolor="#E0E0E0"| May 5
| bgcolor="#C6D46E"| Yu Luo
| bgcolor="#C6D46E"| Ellie Thieu
| bgcolor="#BCE2FE"|[[#December 9 | Stacks for Kindergarteners]]  
| bgcolor="#BCE2FE"|[[#May 5| Visualizing Cohomology ]]
|}
|}
</center>
</center>


=== September 30 ===
=== February 10 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Yifan Wei'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Everyone '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: On Chow groups and K groups
| bgcolor="#BCD2EE"  align="center" | Title: Informal chat session
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: Bring your questions!
Abstract:  
 
We define Chow groups and K groups for non-singular varieties, illustrate some basic properties, and explain how intersection theory is done using K groups (on a smooth surface). Then we proceed to compute the K group of a non-singular curve. On higher dimensions there might be some issues, if time permits we will show how these issues can be mitigated, and why Grothendieck-Riemann-Roch is one of the greatest theorems in algebraic geometry (in my humble opinion).
 
|}                                                                         
|}                                                                         
</center>
</center>


=== October 7 ===
=== February 17 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Owen Goff'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Asvin G '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Roguish Noncommutativity and the Onsager Algebra
| bgcolor="#BCD2EE"  align="center" | Title: Motives
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: Some motivation behind motives
Abstract:  
 
While throughout algebraic geometry and many other fields we like commutative rings, we often wonder what happens if our ring is not commutative. Say, for instance, you have A^2, but instead of xy=yx you have a relation xy = qyx for some constant q. In this talk I will discuss the consequences of this relation and how it relates to an object of combinatorial nature called the q-Onsager algebra.
 
|}                                                                         
|}                                                                         
</center>
</center>


=== October 14 ===
=== February 24 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Peter Wei'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' Yu LUO (Joey) '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: TBD
| bgcolor="#BCD2EE"  align="center" | Title: Riemann-Hilbert Correspondence
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: During the talk, I will start with "nonsingular" version of Riemann-Hilbert correspondence between flat vector bundles and local systems. Then I will introduce the regular singularity, then sketch the Riemann-Hilbert correspondence with regular singularity. If time permit, I will brief mention some applications.
Abstract:  
\end{abstract}
 
TBD
 
|}                                                                         
|}                                                                         
</center>
</center>


=== October 21 ===
=== March 10 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Asvin G'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' Colin Crowley '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Introduction to Arithmetic Schemes
| bgcolor="#BCD2EE"  align="center" | Title: An introduction to Tropicalization
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: Tropicalization is a logarithmic process (functor) that takes embedded algebraic varieties to polyhedral complexes. The complexes that are in the image have some additional structure which leads to the definition of a tropical variety, the main object of study in tropical geometry. I'll talk about the first paper to use these ideas, and the problem that they were used to solve.
Abstract:  
 
TBD
 
|}                                                                         
|}                                                                         
</center>
</center>


=== October 28 ===
=== March 31 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Caitlyn Booms'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' Ruofan '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: TBD
| bgcolor="#BCD2EE"  align="center" | Title: Motivic class of stack of finite modules over a cusp
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: We find the explicit motivic class of stack of finite modules over some complete local rings. This is some recent work originated from a project with Asvin and Yifan.
Abstract:  
 
TBD
 
|}                                                                         
|}                                                                         
</center>
</center>


=== November 4 ===
=== April 7 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''John Cobb'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' Alex Hof '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Koszul Cohomology
| bgcolor="#BCD2EE"  align="center" | Title: Geometric Intuitions for Flatness
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: Flatness is often described as the correct characterization of what it means to have "a nicely varying family of things" in the setting of algebraic geometry. In this talk, which is intended to be pretty low-key, I'll dig a little bit more into what that means, and discuss some theorems and examples that refine and clarify this intuition in various ways.
Abstract:  
 
Or something else, I'm not sure yet. <!-- or maybe that paper by Lazarsfeld about castelnuovo-mumford regularity, or if I'm being lazy the quot functor and moduli theory -->
|}                                                                         
|}                                                                         
</center>
</center>


=== November 11 ===
=== April 14 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Colin Crowley'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' Caitlyn Booms '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Introduction to Geometric Invariant Theory
| bgcolor="#BCD2EE"  align="center" | Title: Virtual criterion for generalized Eagon-Northcott complexes
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: The Eagon-Northcott complex of a map of finitely generated free modules has been an interest of study since 1962, as it generically resolves the ideal of maximal minors of the matrix that defines the map. In 1975, Buchsbaum and Eisenbud described a family of generalized Eagon-Northcott complexes associated to a map of free modules, which are also generically minimal free resolutions. As introduced by Berkesch, Erman, and Smith in 2020, when working over a smooth projective toric variety, virtual resolutions, rather than minimal free resolutions, are a better tool for understanding the geometry of a space. I will describe sufficient criteria for the family of generalized Eagon-Northcott complexes of a map to be virtual resolutions, thus adding to the known examples of virtual resolutions, particularly those not coming from minimal free resolutions.
Abstract: TBD
 
|}                                                                         
|}                                                                         
</center>
</center>


=== November 18 ===
=== April 21 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Connor Simpson'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' Connor Simpson '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Combinatorial Hodge Theory
| bgcolor="#BCD2EE"  align="center" | Title: Symplectic geometry and invariant theory
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: We discuss connections between symplectic geometry and invariant theory.
Abstract: TBD
 
|}                                                                         
|}                                                                         
</center>
</center>


=== December 2 ===
=== April 28 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Alex Mine'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' Karan '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Galois Descent
| bgcolor="#BCD2EE"  align="center" | Title: Using varieties to study polynomial neural networks
 
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: In this talk, I will exposit the work of Kileel, Trager, and Bruna in their 2019 paper "On the Expressive power of Polynomial Neural Networks". We will look at 1) what a polynomial neural network is and how we can interpret the output such networks as varieties, 2) why the dimension of this variety and the expressive power of this network are related, and 3) how the study of these varieties might tell us something about the architecture of the network.
Abstract:  
 
TBD
 
|}                                                                         
|}                                                                         
</center>
</center>


=== December 9 ===
=== May 5 ===
<center>
<center>
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
|-
|-
| bgcolor="#A6B658" align="center" style="font-size:125%" | '''Yu Luo'''
| bgcolor="#A6B658" align="center" style="font-size:125%" | ''' Ellie Thieu '''
|-
|-
| bgcolor="#BCD2EE"  align="center" | Title: Stacks for Kindergarteners
| bgcolor="#BCD2EE"  align="center" | Title: Visualizing Cohomology
|-
|-
| bgcolor="#BCD2EE"  |  
| bgcolor="#BCD2EE"  | Abstract: We will go through Ravi’s picture book together. While thinking about how to present it, I was faced with the choice of either redrawing the whole picture book, or just be honest about my cheating and use the author’s very own beautiful illustrations. This way of looking at cohomology is not perfect, but it offers a very simple understanding of taking cohomology and spectral sequences. I will deliver how to visualize cohomology, and declare it an early victory. Then we will go as far as time allow to understand spectral sequences.
Abstract: Brief introduction to stacks.
 
Please bring your laptop, or anything you can use to follow the illustrations. Because, alas, I will not redraw them on the board.
|}                                                                         
|}                                                                         
</center>
</center>


== Past Semesters ==
== Past Semesters ==
[https://hilbert.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Fall_2021 Fall 2021]
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2021 Spring 2021]
[https://www.math.wisc.edu/wiki/index.php/Graduate_Algebraic_Geometry_Seminar_Spring_2021 Spring 2021]



Latest revision as of 17:33, 3 May 2022

When: 4:30-5:30 PM Thursdays

Where: VV B231

Lizzie the OFFICIAL mascot of GAGS!!

Who: All undergraduate and graduate students interested in algebraic geometry, commutative algebra, and related fields are welcome to attend.

Why: The purpose of this seminar is to learn algebraic geometry and commutative algebra by giving and listening to talks in a informal setting. Sometimes people present an interesting paper they find. Other times people give a prep talk for the Algebraic Geometry Seminar. Other times people give a series of talks on a topic they have been studying in-depth. Regardless the goal of GAGS is to provide a supportive and inclusive place for all to learn more about algebraic geometry and commutative algebra.

How: If you want to get emails regarding time, place, and talk topics (which are often assigned quite last minute) add yourself to the gags mailing list: gags@g-groups.wisc.edu by sending an email to gags+subscribe@g-groups.wisc.edu. If you prefer (and are logged in under your wisc google account) the list registration page is here.

Organizers: John Cobb, Yu (Joey) Luo

Give a talk!

We need volunteers to give talks this semester. If you're interested, please fill out this form. Beginning graduate students are particularly encouraged to give a talk, since it's a great way to get your feet wet with the material. If you would like some talk ideas, see the list on the main page.

Spring 2022 Topic Wish List

This was assembled using input from an interest form at the beginning of the semester. Choose one and you will have the rare guarantee of having one interested audience member. Feel free to add your own.

  • Hilbert Schemes
  • Reductive groups and flag varieties
  • Geothendieck '66, "On the de Rham Cohomology of Algebraic Varieties"
  • Going from line bundles and divisors to vector bundles and chern classes
  • A History of the Weil Conjectures
  • Mumford & Bayer, "What can be computed in Algebraic Geometry?"
  • A pre talk for any other upcoming talk

Being an audience member

The goal of GAGS is to create a safe and comfortable space inclusive of all who wish to expand their knowledge of algebraic geometry and commutative algebra. In order to promote such an environment in addition to the standard expectations of respect/kindness all participants are asked to following the following guidelines:

  • Do Not Speak For/Over the Speaker
  • Ask Questions Appropriately

Talks

Date Speaker Title
February 10 Everyone Informal chat session
February 17 Asvin G Motives
February 24 Yu Luo Riemann-Hilbert Correspondence
March 10 Colin Crowley An introduction to Tropicalization
March 31 Ruofan Motivic class of stack of finite modules over a cusp
April 7 Alex Hof Geometric Intuitions for Flatness
April 14 Caitlyn Booms Virtual criterion for generalized Eagon-Northcott complexes
April 21 Connor Simpson Symplectic geometry and invariant theory
April 28 Karan Using varieties to study polynomial neural networks
May 5 Ellie Thieu Visualizing Cohomology

February 10

Everyone
Title: Informal chat session
Abstract: Bring your questions!

February 17

Asvin G
Title: Motives
Abstract: Some motivation behind motives

February 24

Yu LUO (Joey)
Title: Riemann-Hilbert Correspondence
Abstract: During the talk, I will start with "nonsingular" version of Riemann-Hilbert correspondence between flat vector bundles and local systems. Then I will introduce the regular singularity, then sketch the Riemann-Hilbert correspondence with regular singularity. If time permit, I will brief mention some applications.

\end{abstract}

March 10

Colin Crowley
Title: An introduction to Tropicalization
Abstract: Tropicalization is a logarithmic process (functor) that takes embedded algebraic varieties to polyhedral complexes. The complexes that are in the image have some additional structure which leads to the definition of a tropical variety, the main object of study in tropical geometry. I'll talk about the first paper to use these ideas, and the problem that they were used to solve.

March 31

Ruofan
Title: Motivic class of stack of finite modules over a cusp
Abstract: We find the explicit motivic class of stack of finite modules over some complete local rings. This is some recent work originated from a project with Asvin and Yifan.

April 7

Alex Hof
Title: Geometric Intuitions for Flatness
Abstract: Flatness is often described as the correct characterization of what it means to have "a nicely varying family of things" in the setting of algebraic geometry. In this talk, which is intended to be pretty low-key, I'll dig a little bit more into what that means, and discuss some theorems and examples that refine and clarify this intuition in various ways.

April 14

Caitlyn Booms
Title: Virtual criterion for generalized Eagon-Northcott complexes
Abstract: The Eagon-Northcott complex of a map of finitely generated free modules has been an interest of study since 1962, as it generically resolves the ideal of maximal minors of the matrix that defines the map. In 1975, Buchsbaum and Eisenbud described a family of generalized Eagon-Northcott complexes associated to a map of free modules, which are also generically minimal free resolutions. As introduced by Berkesch, Erman, and Smith in 2020, when working over a smooth projective toric variety, virtual resolutions, rather than minimal free resolutions, are a better tool for understanding the geometry of a space. I will describe sufficient criteria for the family of generalized Eagon-Northcott complexes of a map to be virtual resolutions, thus adding to the known examples of virtual resolutions, particularly those not coming from minimal free resolutions.

April 21

Connor Simpson
Title: Symplectic geometry and invariant theory
Abstract: We discuss connections between symplectic geometry and invariant theory.

April 28

Karan
Title: Using varieties to study polynomial neural networks
Abstract: In this talk, I will exposit the work of Kileel, Trager, and Bruna in their 2019 paper "On the Expressive power of Polynomial Neural Networks". We will look at 1) what a polynomial neural network is and how we can interpret the output such networks as varieties, 2) why the dimension of this variety and the expressive power of this network are related, and 3) how the study of these varieties might tell us something about the architecture of the network.

May 5

Ellie Thieu
Title: Visualizing Cohomology
Abstract: We will go through Ravi’s picture book together. While thinking about how to present it, I was faced with the choice of either redrawing the whole picture book, or just be honest about my cheating and use the author’s very own beautiful illustrations. This way of looking at cohomology is not perfect, but it offers a very simple understanding of taking cohomology and spectral sequences. I will deliver how to visualize cohomology, and declare it an early victory. Then we will go as far as time allow to understand spectral sequences.

Please bring your laptop, or anything you can use to follow the illustrations. Because, alas, I will not redraw them on the board.

Past Semesters

Fall 2021

Spring 2021

Fall 2020

Spring 2020

Fall 2019

Spring 2019

Fall 2018

Spring 2018

Fall 2017

Spring 2017

Fall 2016

Spring 2016

Fall 2015