Spring 2023 Analysis Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 35: Line 35:
|Shaoming Guo
|Shaoming Guo
|UW Madison
|UW Madison
|[[Hormander's generalization of the Fourier restriction problem]]
|[[Spring 2023 Analysis Seminar#Shaoming Guo|Hormander's generalization of the Fourier restriction problem]]
|Analysis group
|Analysis group
|-
|-

Revision as of 19:06, 3 February 2023

Organizer: Shaoming Guo

Email: shaomingguo (at) math (dot) wisc (dot) edu

Time: Tuesdays, 4-5pm

Room: Van Vleck B139

All talks will be in-person unless otherwise specified.

In some cases the seminar may be scheduled at different time to accommodate speakers.

If you would like to subscribe to the Analysis seminar list, send a blank email to analysis+join (at) g-groups (dot) wisc (dot) edu

Date Speaker Institution Title Host(s)
Jan. 24
Jan. 31
Feb. 7 Shaoming Guo UW Madison Hormander's generalization of the Fourier restriction problem Analysis group
Feb. 14 Diogo Oliveira e Silva Departamento de Matemática

Instituto Superior Técnico

Betsy Stovall, Andreas Seeger
Feb. 21 Jack Burkart UW Madison Analysis group
Feb. 28 Shengwen Gan MIT Analysis group
Mar. 7 Yuqiu Fu MIT Zane Li
Mar. 14 Spring break
Mar. 21 Zhiren Wang Penn State Shaoming Guo, Chenxi Wu
Mar. 28
Apr. 4 Liding Yao Ohio State Brian Street
Apr. 11 Dominique Maldague MIT Betsy Stovall, Andreas Seeger
Apr. 18 David Beltran Universitat de València. Andreas Seeger
Apr. 25 Herve Gaussier Institut Fourier Xianghong Gong, Andy Zimmer
May 2


Abstracts

Shaoming Guo

Title: Hormander's generalization of the Fourier restriction problem

Abstract: Hormander 1973 proposed to study a generalized Fourier extension operator, and asked whether the generalized operator satisfies the same L^p bounds as that of the standard Fourier extension operator. Surprisingly, Bourgain 1991 gave a negative answer to Hormander’s question. In this talk, I will discuss a modification of Hormander’s question whose answer may be affirmative. This is a joint work with Hong Wang and Ruixiang Zhang.



[1] Previous Analysis Seminars

[2] Fall 2022 Analysis Seminar