Spring 2023 Analysis Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
(added titles)
No edit summary
Line 59: Line 59:
|Yuqiu Fu
|Yuqiu Fu
|MIT
|MIT
|
|[[Spring 2023 Analysis Seminar#Yuqiu Fu|Incidence estimates for tubes and balls with dimensional spacing condition in R^2.]]
|Zane Li
|Zane Li
|-
|-
Line 135: Line 135:


Abstract: Let $A\subset \mathbb{F}^3_p$ with $\# A=p^a$. For any direction $\theta$ in $\mathbb{F}^3_p$, define $\pi_{\theta}(A)$ to be the set of lines in direction $\theta$ and passing through $A$. Define the exceptional set $E_s(A):=\{\theta: \# \pi_\theta (A)<p^s \}$. Falconer-type estimate gives $\# E_s(A)\lesssim p^{2+s-a} $. I will talk about a new result: If $s<\frac{a+1}{2}$, then $\# E_s(A)\lesssim p^{2+2s-2a}$.   
Abstract: Let $A\subset \mathbb{F}^3_p$ with $\# A=p^a$. For any direction $\theta$ in $\mathbb{F}^3_p$, define $\pi_{\theta}(A)$ to be the set of lines in direction $\theta$ and passing through $A$. Define the exceptional set $E_s(A):=\{\theta: \# \pi_\theta (A)<p^s \}$. Falconer-type estimate gives $\# E_s(A)\lesssim p^{2+s-a} $. I will talk about a new result: If $s<\frac{a+1}{2}$, then $\# E_s(A)\lesssim p^{2+2s-2a}$.   
===[[Yuqiu Fu]]===
Title: Incidence estimates for tubes and balls with dimensional spacing condition in R^2.
Abstract: We will discuss essentially sharp incidence estimates in R^2 for a collection of tubes of dimension \delta \times 1 and a collection of balls of radius \delta, which satisfy some dimensional spacing condition. An application of these estimates is a new lower bound on the Hausdorff dimension of a (s,t) – Furstenberg set in R^2 when t > 1 + \epsilon(s,t) and s + t/2 \geq 1, where \epsilon is small depending on (s,t). This is joint work with Kevin Ren.
   
   



Revision as of 16:07, 28 February 2023

Organizer: Shaoming Guo

Email: shaomingguo (at) math (dot) wisc (dot) edu

Time: Tuesdays, 4-5pm

Room: Van Vleck B139

All talks will be in-person unless otherwise specified.

In some cases the seminar may be scheduled at different time to accommodate speakers.

If you would like to subscribe to the Analysis seminar list, send a blank email to analysis+join (at) g-groups (dot) wisc (dot) edu

Date Speaker Institution Title Host(s)
Jan. 24
Jan. 31
Feb. 7 Shaoming Guo UW Madison Hörmander's generalization of the Fourier restriction problem Analysis group
Feb. 14 Diogo Oliveira e Silva Instituto Superior Técnico (Lisboa) The Stein-Tomas inequality: three recent improvements Betsy Stovall, Andreas Seeger
Feb. 21 Jack Burkart UW Madison Sobolev Spaces for General Metric Spaces Analysis group
Feb. 28 Shengwen Gan MIT Exceptional set estimates in finite field Analysis group
Mar. 7 Yuqiu Fu MIT Incidence estimates for tubes and balls with dimensional spacing condition in R^2. Zane Li
Mar. 14 Spring break
Mar. 21 Zhiren Wang Penn State Shaoming Guo, Chenxi Wu
Mar. 28
Apr. 4 Liding Yao Ohio State Brian Street
Apr. 11 Dominique Maldague MIT Betsy Stovall, Andreas Seeger
Apr. 18 David Beltran Universitat de València. Andreas Seeger
Apr. 25 Herve Gaussier Institut Fourier Xianghong Gong, Andy Zimmer
May 2 Lisa Naples Macalester College Jack Burkart


Abstracts

Shaoming Guo

Title: Hormander's generalization of the Fourier restriction problem

Abstract: Hörmander 1973 proposed to study a generalized Fourier extension operator, and asked whether the generalized operator satisfies the same L^p bounds as that of the standard Fourier extension operator. Surprisingly, Bourgain 1991 gave a negative answer to Hörmander’s question. In this talk, I will discuss a modification of Hörmander’s question whose answer may be affirmative. This is a joint work with Hong Wang and Ruixiang Zhang.


Diogo Oliveira e Silva

Title: The Stein-Tomas inequality: three recent improvements

Abstract: The Stein-Tomas inequality dates back to 1975 and is a cornerstone of Fourier restriction theory. Despite its respectable age, it is a fertile ground for current research. The goal of this talk is three-fold: we present a recent proof of the sharp endpoint Stein-Tomas inequality in three space dimensions; we present a variational refinement and withdraw some consequences; and we discuss how to improve the Stein-Tomas inequality in the presence of certain symmetries.

Jack Burkart

Title: Sobolev Spaces for General Metric Spaces

Abstract: Sobolev spaces are classically defined in Euclidean space as L^p functions possessing weak derivatives (of some order). Recently, there has been interest in doing analysis and developing a theory of calculus on general metric spaces. A natural question one might ask is how can one define Sobolev spaces in an arbitrary metric space? In this talk, I'll discuss some ways we can generalize concepts like the Poincare inequalty to an arbitrary metric space and showcase some alternative definitions that can be used in more general settings. After discussing some known results in this area, I'll spend the latter part of the talk discussing some of my own ongoing research involving establishing Poincare inequalities in domains in Euclidean space that are not necessarily W^{1,p} extension domains and some other questions we are currently considering. This talk features joint and ongoing work with Ryan Alvarado, Lisa Naples, and Benham Esmayli.


Shengwen Gan

Title: Exceptional set estimates in finite field

Abstract: Let $A\subset \mathbb{F}^3_p$ with $\# A=p^a$. For any direction $\theta$ in $\mathbb{F}^3_p$, define $\pi_{\theta}(A)$ to be the set of lines in direction $\theta$ and passing through $A$. Define the exceptional set $E_s(A):=\{\theta: \# \pi_\theta (A)<p^s \}$. Falconer-type estimate gives $\# E_s(A)\lesssim p^{2+s-a} $. I will talk about a new result: If $s<\frac{a+1}{2}$, then $\# E_s(A)\lesssim p^{2+2s-2a}$.



Yuqiu Fu

Title: Incidence estimates for tubes and balls with dimensional spacing condition in R^2.

Abstract: We will discuss essentially sharp incidence estimates in R^2 for a collection of tubes of dimension \delta \times 1 and a collection of balls of radius \delta, which satisfy some dimensional spacing condition. An application of these estimates is a new lower bound on the Hausdorff dimension of a (s,t) – Furstenberg set in R^2 when t > 1 + \epsilon(s,t) and s + t/2 \geq 1, where \epsilon is small depending on (s,t). This is joint work with Kevin Ren.


[1] Previous Analysis Seminars

[2] Fall 2022 Analysis Seminar