Spring 2024 Analysis Seminar: Difference between revisions
No edit summary |
|||
Line 177: | Line 177: | ||
- real zeros of some hypergeometric polynomials, their monotonicity, interlacing, and asymptotics; | - real zeros of some hypergeometric polynomials, their monotonicity, interlacing, and asymptotics; | ||
- flow of zeros of polynomials under iterated differentiation. | - flow of zeros of polynomials under iterated differentiation. | ||
===[[Alex Rutar]]=== | ===[[Alex Rutar]]=== |
Revision as of 16:19, 23 February 2024
Organizer: Shaoming Guo
Email: shaomingguo (at) math (dot) wisc (dot) edu
Time: Wed 3:30--4:30
Room: B223
We can use B223 from 4:30 to 5:00 for discussions after talks.
All talks will be in-person unless otherwise specified.
In some cases the seminar may be scheduled at different time to accommodate speakers.
If you would like to subscribe to the Analysis seminar list, send a blank email to analysis+join (at) g-groups (dot) wisc (dot) edu
Date | Speaker | Institution | Title | Host | ||
1 | We, Jan. 24, 2024 | |||||
2 | We, Jan. 31 | Sunggeum Hong | Chosun University | The Hörmander multiplier theorem for n-linear operators and its applications | Andreas | |
3 | We, Feb. 7 | Donald Stull | University of Chicago | Dimensions of pinned distance sets in the plane | Betsy, Shaoming, and Jake F. | |
4 | We, Feb. 14 | |||||
Fr, Feb. 16 | Jack Lutz | Iowa State University | Algorithmic Fractal Dimensions | Shaoming | department colloquium, 4-5pm | |
5 | We, Feb. 21 | Andrei Martinez-Finkelshtein | Baylor | Zeros of polynomials and free probability | Sergey | |
6 | We, Feb. 28 | Alex Rutar | University of St. Andrews | Dynamical covering arguments via large deviations and non-convex optimization | Andreas | |
7 | We, Mar. 6 | Song-Ying Li | UC-Irvine | Sup-norm estimates for d-bar and Corona Problems | Xianghong | |
8 | We, Mar. 13 | |||||
9 | We, Mar. 20 | Xiaoqi Huang | LSU | Shaoming | ||
10 | We, Mar. 27 | Spring recess | spring recess | spring recess | ||
11 | We, Apr. 3 | |||||
12 | We, Apr. 10 | Victor Bailey | University of Oklahoma | Betsy | ||
13 | We, Apr. 17 | Jianhui (Franky) Li | Northwestern University | Betsy | ||
14 | We, Apr. 24 | |||||
15 | We, May 1 |
Abstracts
Donald Stull
Title: Dimensions of pinned distance sets in the plane
Abstract: In this talk, we discuss recent work on the Hausdorff and packing dimension of pinned distance sets in the plane. Given a point x in the plane , and a subset E , the pinned distance set of E with respect to x is the set of all distances between x and the points of E . An important open problem is understanding the Hausdorff, and packing, dimensions of pinned distance sets. We will discuss ongoing progress on this problem, and present improved lower bounds for both the Hausdorff and packing dimensions of pinned distance sets. We also discuss the computability-theoretic methods used to achieve these bounds.
Jack Lutz
Title: Algorithmic Fractal Dimensions
Algorithmic fractal dimensions are computability theoretic versions of Hausdorff dimension and other fractal dimensions. This talk will introduce algorithmic fractal dimensions with particular focus on the Point-to-Set Principle. This principle has enabled several recent proofs of new theorems in geometric measure theory. These theorems, some solving long-standing open problems, are classical (meaning that their statements do not involve computability or logic), even though computability has played a central in their proofs.
Andrei Martinez-Finkelshtein
Title: Zeros of polynomials and free probability
Abstract: I will discuss briefly the connections of some problems from the geometric theory of polynomials to notions from free probability, such as free convolution. More specifically, I will illustrate it with two examples: - real zeros of some hypergeometric polynomials, their monotonicity, interlacing, and asymptotics; - flow of zeros of polynomials under iterated differentiation.
Alex Rutar
Title: Dynamical covering arguments via large deviations and non-convex optimization
Abstract: Most classical notions of fractal dimensions (such as the Hausdorff, box, and Assouad dimensions) are defined in terms of optimal covers, or families of balls minimizing some form of cost function of their radii. For general sets, the optimal covers can be forced to essentially have arbitrary complexity. But for sets satisfying some form of dynamical invariance (which is the case for the majority of well-studied ‘fractal’ sets), one hopes that the underlying dynamics can be used to inform the optimal choice of cover in a meaningful way. In this talk, I will present some techniques drawing on insights from large deviations theory and continuous optimization theory which have proven to be useful technical tools in dimension theory. To highlight these techniques, I will discuss a recent result (joint with Amlan Banaji, Jonathan Fraser, and István Kolossváry) on the dimension theory of sets invariant under certain families of affine transformations in the plane.
Song-Ying Li
Title: Sup-norm estimates for d-bar and Corona problems
In this talk, we will present some development of Corona problem of several complex variables and discuss its relation to the solution of the sup-norm estimate for d-bar, the Berndtsson conjecture and its application to Corona problem. We will also discuss the application of Hormander weighted L^2 estimates for d-bar to Corona problem.