Graduate Geometric Analysis Reading Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
 
(20 intermediate revisions by 2 users not shown)
Line 1: Line 1:
This is the graduate reading seminar in differential geometry / geometric PDEs. Students will give literature talks on a topic over the semester, with participation from the differential geometers in the department (Sean Paul, Alex Waldron, Ruobing Zhang, Sigurd Angenent).
The graduate reading seminar in differential geometry / geometric analysis meets '''Tuesdays 4-6pm''' in '''Van Vleck B211'''. Students will give literature talks over the semester with participation by several faculty (Sean Paul, Alex Waldron, Ruobing Zhang, and Sigurd Angenent).


The topic for Fall and Spring 2024 is '''Ricci flow'''. We will cover the fundamentals in the fall and try to get through most of Perelman's proof of the Poincaré conjecture before the end of the year. We may also dip into the proof of Thurston's geometrization conjecture.
The topic for Fall 2024 is '''Ricci flow'''. We will cover the fundamentals in the fall and try to get through most of Perelman's proof of the Poincaré conjecture before the end of the year. We may also dip into the proof of Thurston's geometrization conjecture.


To join the mailing list, send an email to: math-geom-reading+subscribe@g-groups.wisc.edu.
To join the mailing list, send an email to: math-geom-reading+subscribe@g-groups.wisc.edu.
Meeting time: Tuesday 4-6pm
Meeting location: Van Vleck B211
=== Fall 2024 Schedule ===
=== Fall 2024 Schedule ===
{| class="wikitable"
{| class="wikitable"
Line 17: Line 10:
!Speaker
!Speaker
!Title
!Title
!Comments
!Reference
|-
|-
|9/10
|9/10
Line 25: Line 18:
|-
|-
|9/17
|9/17
|TBD
|Alex Waldron
|Rapid course in Riemannian geometry
|[https://people.math.wisc.edu/~awaldron3/Notes/Crash%20course%20091724 Notes]
|-
|9/24
|Ruocheng Yang
|Evolution equations under Ricci flow
|Evolution equations under Ricci flow
|Topping Ch. 2
|Topping Ch. 2, [https://people.math.wisc.edu/~awaldron3/Notes/Ruocheng%20Ch.%202%20notes.pdf Notes]
|-
|10/1
|Kaiyi Huang
|The maximum principle
|Topping Ch. 3, [https://people.math.wisc.edu/~awaldron3/Notes/Kaiyi%20maximum%20principle Notes]
|-
|10/8
|Anuk Dayaprema
|Short-time existence for the Ricci flow
|Topping Ch. 4-5
|-
|10/15
|Yijie He
|Ricci flow as a gradient flow
|Topping Ch. 6
|-
|10/22
|Ruobing Zhang
|The compactness theorem for the Ricci flow
|Topping Ch. 7
|-
|10/29
|Alex Waldron
|Curvature pinching and preserved curvature properties
|Topping Ch. 9
|-
|11/05
|Andoni Royo-Abrego (Tübingen)
|Ricci flow and sphere theorems
|[https://people.math.wisc.edu/~awaldron3/Notes/Andoni%20sphere%20theorems%20talk Notes]
|-
|-
|
|11/12
|
|Anuk Dayaprema
|
|Perelman's W-functional
|
|Topping Ch. 8
|}
|}


Line 38: Line 66:
Spring '24: Heat-kernel approach to the Atiyah-Singer index theorem
Spring '24: Heat-kernel approach to the Atiyah-Singer index theorem


Fall '23: G2 geometry
Fall '23: G<sub>2</sub> geometry


Spring '23: Yau's proof of the Calabi conjecture
Spring '23: Yau's proof of the Calabi conjecture

Latest revision as of 02:56, 10 November 2024

The graduate reading seminar in differential geometry / geometric analysis meets Tuesdays 4-6pm in Van Vleck B211. Students will give literature talks over the semester with participation by several faculty (Sean Paul, Alex Waldron, Ruobing Zhang, and Sigurd Angenent).

The topic for Fall 2024 is Ricci flow. We will cover the fundamentals in the fall and try to get through most of Perelman's proof of the Poincaré conjecture before the end of the year. We may also dip into the proof of Thurston's geometrization conjecture.

To join the mailing list, send an email to: math-geom-reading+subscribe@g-groups.wisc.edu.

Fall 2024 Schedule

Date Speaker Title Reference
9/10 Sigurd Angenent Introduction to the Ricci flow
9/17 Alex Waldron Rapid course in Riemannian geometry Notes
9/24 Ruocheng Yang Evolution equations under Ricci flow Topping Ch. 2, Notes
10/1 Kaiyi Huang The maximum principle Topping Ch. 3, Notes
10/8 Anuk Dayaprema Short-time existence for the Ricci flow Topping Ch. 4-5
10/15 Yijie He Ricci flow as a gradient flow Topping Ch. 6
10/22 Ruobing Zhang The compactness theorem for the Ricci flow Topping Ch. 7
10/29 Alex Waldron Curvature pinching and preserved curvature properties Topping Ch. 9
11/05 Andoni Royo-Abrego (Tübingen) Ricci flow and sphere theorems Notes
11/12 Anuk Dayaprema Perelman's W-functional Topping Ch. 8

Past topics:

Spring '24: Heat-kernel approach to the Atiyah-Singer index theorem

Fall '23: G2 geometry

Spring '23: Yau's proof of the Calabi conjecture

Fall '22: Spin geometry and the index theorem

Spring '22: Differential-geometric approach to GIT.