SIAM Student Chapter Seminar: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
 
(22 intermediate revisions by 4 users not shown)
Line 3: Line 3:
*'''When:''' Fridays at 1 PM unless noted otherwise
*'''When:''' Fridays at 1 PM unless noted otherwise
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Where:''' 9th floor lounge (we will also broadcast the virtual talks on the 9th floor lounge with refreshments)
*'''Organizers:''' Yahui Qu, Peiyi Chen, Shi Chen and Zaidan Wu
*'''Organizers:''' Yahui Qu, Peiyi Chen and Zaidan Wu
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright]  
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
*'''To join the SIAM Chapter mailing list:''' email [mailto:siam-chapter+join@g-groups.wisc.edu siam-chapter+join@g-groups.wisc.edu].
Line 9: Line 9:
*'''Passcode:  281031'''
*'''Passcode:  281031'''


== Spring 2024 ==
== Fall 2024 ==


{| class="wikitable"
{| class="wikitable"
Line 18: Line 18:
!Title
!Title
|-
|-
|2/2
|10 AM 10/4
|VV911
|Birge 346
|Thomas Chandler (UW-Madison)
|Federica Ferrarese (University of Ferrara, Italy)
|Fluid–body interactions in anisotropic fluids
|Control plasma instabilities via an external magnetic field: deterministic and uncertain approaches
|-
|-
|3/8
|11 AM 10/18
|Ingraham 214
|9th floor
|Danyun He (Harvard)
|Martin Guerra (UW-Madison)
|Energy-positive soaring using transient turbulent fluctuations
|Swarm-Based Gradient Descent Meets Simulated Annealing
|-
|-
|3/15
|12:30 PM 10/31
|VV911&Zoom
|VV 901
|Xiaoyu Dong (UMich)
|Chuanqi Zhang (University of Technology Sydney)
|Approximately Hadamard matrices and Riesz bases in frames
|Faster isomorphism testing of p-groups of Frattini class-2
|-
|-
|3/22
|11/8
|VV911&Zoom
|9th floor
|Mengjin Dong (UPenn)
|Borong Zhang (UW-Madison)
|Advancing Alzheimer's Disease Research: Insights and Innovations in MRI-Based Progression Tracking
|Solving the Inverse Scattering Problem: Leveraging Symmetries for Machine Learning
|-
|-
|4/5
|11/15
|VV911
|9th floor
|Sixu Li (UW-Madison)
(zoom)
|A Good Score Does not Lead to A Good Generative Model
|Yantao Wu (Johns Hopkins University)  
|Conditional Regression on Nonlinear Variable Model
|-
|-
|4/12
|
|VV911&Zoom
|
|Anjali Nair (UChicago)
|
|Some scaling limits for long distance wave propagation in random media
|
|-
|-
|4/19
|
|VV911
|
|Jingyi Li (UW-Madison)
|
|Arrested development of active suspensions in anisotropic fluids
|
|-
|-
|5/3
|
|
|Bella Finkel (UW-Madison)
|
|TBD
|
|
|}
|}


==Abstracts==
==Abstracts==
'''February 2, Thomas Chandler (UW-Madison):''' Fluid anisotropy, or direction-dependent response to deformation, can be observed in biofluids like mucus or, at a larger scale, self-aligning swarms of active bacteria. A model fluid used to investigate such environments is a nematic liquid crystal. In this talk, we will use complex variables to analytically solve for the interaction between bodies immersed in liquid crystalline environments. This approach allows for the solution of a wide range of problems, opening the door to studying the role of body geometry, liquid crystal anchoring conditions, and deformability. Shape-dependent forces between bodies, surface tractions, and analogues to classical results in fluid dynamics will also be discussed.
'''October 4th, Federica Ferrarese (University of Ferrara, Italy)''': The study of the problem of plasma confinement in huge devices, such as for example Tokamaks and Stellarators, has attracted a lot of attention in recent years. Strong magnetic fields in these systems can lead to instabilities, resulting in vortex formation. Due to the extremely high temperatures in plasma fusion, physical materials cannot be used for confinement, necessitating the use of external magnetic fields to control plasma density. This approach involves studying the evolution of plasma, made up of numerous particles, using the Vlasov-Poisson equations. In the first part of the talk, the case without uncertainty is explored. Particle dynamics are simulated using the Particle-in-Cell (PIC) method, known for its ability to capture kinetic effects and self-consistent interactions. The goal is to derive an instantaneous feedback control that forces the plasma density to achieve a desired distribution. Various numerical experiments are presented to validate the results. In the second part, uncertainty is introduced into the system, leading to the development of a different control strategy. This method is designed to steer the plasma towards a desired configuration even in the presence of uncertainty. The presentation concludes with a comparison of the two control strategies, supported by various numerical experiments.
 
'''March 8, Danyun He (Harvard University):''' The ability of birds to soar in the atmosphere is a fascinating scientific problem. It relies on an interplay between the physical processes governing atmospheric flows, and the capacity of birds to process cues from their environment and learn complex navigational strategies. Previous models for soaring have primarily taken advantage of thermals of ascending hot air to gain energy. Yet, it remains unclear whether energy loss due to drag can be overcome by extracting work from transient turbulent fluctuations. In this talk, I will present a recent work that we look at the alternative scenario of a glider navigating in an idealized model of a turbulent fluid where no thermals are present. First, I will show the numerical simulations of gliders navigating in a kinematic model that captures the spatio-temporal correlations of atmospheric turbulence. Energy extraction is enabled by an adaptive algorithm based on Monte Carlo tree search that dynamically filters acquired information about the flow to plan future paths. Then, I will demonstrate that for realistic parameter choices, a glider can navigate to gain height and extract energy from flow. Glider paths reflect patterns of foraging, where exploration of the flow is interspersed with bouts of energy extraction through localized spirals. As such, this work broadens our understanding of soaring, and extends the range of scenarios where soaring is known to be possible.
 
'''March 15, Xiaoyu Dong (University of Michigan, Ann Arbor):''' An $n \times n$ matrix with $\pm 1$ entries which acts on $\R^n$ as a scaled isometry is called Hadamard. Such matrices exist in some, but not all dimensions. Combining number-theoretic and probabilistic tools we construct matrices with $\pm 1$ entries which act as approximate scaled isometries in $\R^n$ for all $n \in \N$. More precisely, the matrices we construct have condition numbers bounded by a constant independent of $n$.
 
Using this construction, we establish a phase transition for the probability that a random frame contains a Riesz basis. Namely, we show that a random frame in $\R^n$ formed by $N$ vectors with  independent identically distributed coordinate having a non-degenerate symmetric distribution contains many Riesz bases with high probability provided that $N \ge \exp(Cn)$. On the other hand, we prove that if the entries are subgaussian, then a random frame fails to contain a Riesz basis with probability close to $1$ whenever $N \le \exp(cn)$, where $c<C$ are constants depending on the distribution of the entries.
 
 
'''March 22, Mengjin Dong (University of Pennsylvania)''': Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory loss, cognitive decline, and behavioral changes primarily in the elderly population. As the most prevalent form of dementia, it impacts millions of families globally. The pathological hallmarks of AD, such as abnormal protein build-up in the brain, can manifest decades before the onset of clinical symptoms. Neuroimaging modalities such as positron emission tomography (PET) and magnetic resonance imaging (MRI) play pivotal roles in studying disease progression and elucidating its underlying mechanisms.
 
In this presentation, I will commence with an overview of AD fundamentals and recent research advancements. Subsequently, I will delve into my research, which utilizes deep learning techniques to longitudinally monitor and localize AD progression using MRI data.
 
 
'''April 5, Sixu Li (UW-Madison):''' Score-based Generative Models (SGMs) is one leading method in generative modeling, renowned for their ability to generate high-quality samples from complex, high-dimensional data distributions. The method enjoys empirical success and is supported by rigorous theoretical convergence properties. In particular, it has been shown that SGMs can generate samples from a distribution that is close to the ground-truth if the underlying score function is learned well, suggesting the success of SGM as a generative model. We provide a counter-example in this paper. Through the sample complexity argument, we provide one specific setting where the score function is learned well. Yet, SGMs in this setting can only output samples that are Gaussian blurring of training data points, mimicking the effects of kernel density estimation. The finding resonates a series of recent finding that reveal that SGMs can demonstrate strong memorization effect and fail to generate.
 
This is a joint work with Shi Chen and Qin Li.
 


'''April 12, Anjali Nair (UChicago):''' Wave propagation in random media is a rather interesting and complex phenomenon owing to the interplay of multiple scales. While a complete understanding of wave fields propagating in reasonably arbitrary random media remains essentially out of reach, much progress has been made in the setting of paraxial beam propagation. The paraxial approximation aims at considering high-frequency waves propagating over long distances along a privileged direction with negligible backscattering. In particular, I will discuss the so-called white noise paraxial scaling, where different asymptotic regimes lead to very different statistical limits for the wave field.
'''October 18th, Martin Guerra (UW-Madison)''': In generic non-convex optimization, one needs to be able to pull samples out of local optimal points to achieve global optimization. Two common strategies are deployed: adding stochasticity to samples such as Brownian motion, as is done in simulated annealing (SA), and employing a swarm of samples to explore the whole landscape, as is done in Swarm-Based Gradient Descent (SBGD). The two strategies have severe drawbacks but complement each other on their strengths. SA fails in the accuracy sense, i.e., finding the exact optimal point, but succeeds in always being able to get close, while SBGD fails in the probability sense, i.e., it has non-trivial probability to fail, but if succeeds, can find the exact optimal point. We propose to combine the strength of the two and develop a swarm-based stochastic gradient method with samples automatically adjusting their annealing. Using mean-field analysis and long-time behavior PDE tools, we can prove the method to succeed in both the accuracy sense and the probability sense. Numerical examples verify these theoretical findings.


'''October 31st, Chuanqi Zhang''' (University of Technology Sydney): The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical $N^{O(\log N)}$-time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p-groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an $N^{O((\log N)^{5/6})}$-time algorithm for this group class. Our work sharpens the key technical ingredients in Sun's algorithm and further improves Sun's result by presenting an $N^{\tilde O((\log N)^{1/2})}$-time algorithm for this group class. Besides, we also extend the result to the more general p-groups of Frattini class-2, which includes non-abelian 2-groups. In this talk, I will present the problem background and our main algorithm in detail, and introduce some connections with other research topics. For example, one intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow--Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p-groups of Frattini class-2.


'''April 19, Jingyi Li (UW-Madison):''' Active suspensions in anisotropic, viscoelastic fluids experience competing stresses on their orientational alignment. The orientational order of extensile-stress-generating particles is hydrodynamically unstable to a bend instability, but the elasticity of the fluid drives the system towards
'''November 8th, Borong Zhang''' (UW-Madison): The inverse scattering problem—reconstructing the properties of an unknown medium by probing it with waves and measuring the medium's response at the boundary—is fundamental in physics and engineering. This talk will focus on how leveraging the symmetries inherent in this problem can significantly enhance machine learning methods for its solution. By incorporating these symmetries into both deterministic neural network architectures and probabilistic frameworks like diffusion models, we achieve more accurate and computationally efficient reconstructions. This symmetry-driven approach reduces the complexity of the models and improves their performance, illustrating how physical principles can inform and strengthen machine learning techniques. Applications demonstrating these benefits will be briefly discussed.


alignment. To study these competing effects, we examine a dilute suspension of active particles in an Ericksen-Leslie model nematic liquid crystal. Our first observation is that, a bifurcation emerges uniform alignment with no flow, to a steady flowing state of arrested development, as the particle activity cross a critical threshold. And a secondary instability to transverse perturbations is observed at larger activity, leading to arrested, flowing states with features emerging at smaller wavelengths. Finally, if the system is motile, the arrested states become traveling wave solutions of coupled nonlinear advection-diffusion equations with spatially varying particle concentration and orientation.  
'''November 15th, Yantao Wu''' (Johns Hopkins): We consider the problem of estimating the intrinsic structure of composite functions of the type $\mathbb{E} [Y|X] = f(\Pi_\gamma X) $ where $\Pi_\gamma:\mathbb{R}^d\to\mathbb{R}^1$ is the closest point projection operator onto some unknown smooth curve $\gamma: [0, L]\to \mathbb{R}^d$ and  $f: \mathbb{R}^1\to \mathbb{R}^1$ is some unknown  {\it link} function. This model is the generalization of the single-index model where $\mathbb{E}[Y|X]=f(\langle v, X\rangle)$ for some unknown {\it index} vector $v\in\mathbb{S}^{d-1}$. On the other hand, this model is a particular case of function composition model where $\mathbb{E}[Y|X] = f(g(x))$ for some unknown multivariate function $g:\mathbb{R}^d\to\mathbb{R}$. In this paper, we propose an algorithm based on conditional regression and show that under some assumptions restricting the complexity of curve $\gamma$, our algorithm can achieve the one-dimensional optimal minimax rate, plus a curve approximation error bounded by $\mathcal{O}(\sigma_\zeta^2)$. We also perform numerical tests to verify that our algorithm is robust, in the sense that even without some assumptions, the mean squared error can still achieve $\mathcal{O}(\sigma_\zeta^2)$.  


==Past Semesters==
==Past Semesters==
*[[SIAM Fall 2023]]
*[https://wiki.math.wisc.edu/index.php/SIAM_Spring_2024 Spring 2024]
*[[SIAM Spring 2023]]
*[[SIAM Fall 2023|Fall 2023]]
*[[SIAM Spring 2023|Spring 2023]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[SIAM Seminar Fall 2022|Fall 2022]]
*[[Spring 2022 SIAM|Spring 2022]]
*[[Spring 2022 SIAM|Spring 2022]]

Latest revision as of 22:40, 13 November 2024


Fall 2024

Date Location Speaker Title
10 AM 10/4 Birge 346 Federica Ferrarese (University of Ferrara, Italy) Control plasma instabilities via an external magnetic field: deterministic and uncertain approaches
11 AM 10/18 9th floor Martin Guerra (UW-Madison) Swarm-Based Gradient Descent Meets Simulated Annealing
12:30 PM 10/31 VV 901 Chuanqi Zhang (University of Technology Sydney) Faster isomorphism testing of p-groups of Frattini class-2
11/8 9th floor Borong Zhang (UW-Madison) Solving the Inverse Scattering Problem: Leveraging Symmetries for Machine Learning
11/15 9th floor

(zoom)

Yantao Wu (Johns Hopkins University) Conditional Regression on Nonlinear Variable Model

Abstracts

October 4th, Federica Ferrarese (University of Ferrara, Italy): The study of the problem of plasma confinement in huge devices, such as for example Tokamaks and Stellarators, has attracted a lot of attention in recent years. Strong magnetic fields in these systems can lead to instabilities, resulting in vortex formation. Due to the extremely high temperatures in plasma fusion, physical materials cannot be used for confinement, necessitating the use of external magnetic fields to control plasma density. This approach involves studying the evolution of plasma, made up of numerous particles, using the Vlasov-Poisson equations. In the first part of the talk, the case without uncertainty is explored. Particle dynamics are simulated using the Particle-in-Cell (PIC) method, known for its ability to capture kinetic effects and self-consistent interactions. The goal is to derive an instantaneous feedback control that forces the plasma density to achieve a desired distribution. Various numerical experiments are presented to validate the results. In the second part, uncertainty is introduced into the system, leading to the development of a different control strategy. This method is designed to steer the plasma towards a desired configuration even in the presence of uncertainty. The presentation concludes with a comparison of the two control strategies, supported by various numerical experiments.

October 18th, Martin Guerra (UW-Madison): In generic non-convex optimization, one needs to be able to pull samples out of local optimal points to achieve global optimization. Two common strategies are deployed: adding stochasticity to samples such as Brownian motion, as is done in simulated annealing (SA), and employing a swarm of samples to explore the whole landscape, as is done in Swarm-Based Gradient Descent (SBGD). The two strategies have severe drawbacks but complement each other on their strengths. SA fails in the accuracy sense, i.e., finding the exact optimal point, but succeeds in always being able to get close, while SBGD fails in the probability sense, i.e., it has non-trivial probability to fail, but if succeeds, can find the exact optimal point. We propose to combine the strength of the two and develop a swarm-based stochastic gradient method with samples automatically adjusting their annealing. Using mean-field analysis and long-time behavior PDE tools, we can prove the method to succeed in both the accuracy sense and the probability sense. Numerical examples verify these theoretical findings.

October 31st, Chuanqi Zhang (University of Technology Sydney): The finite group isomorphism problem asks to decide whether two finite groups of order N are isomorphic. Improving the classical $N^{O(\log N)}$-time algorithm for group isomorphism is a long-standing open problem. It is generally regarded that p-groups of class 2 and exponent p form a bottleneck case for group isomorphism in general. The recent breakthrough by Sun (STOC '23) presents an $N^{O((\log N)^{5/6})}$-time algorithm for this group class. Our work sharpens the key technical ingredients in Sun's algorithm and further improves Sun's result by presenting an $N^{\tilde O((\log N)^{1/2})}$-time algorithm for this group class. Besides, we also extend the result to the more general p-groups of Frattini class-2, which includes non-abelian 2-groups. In this talk, I will present the problem background and our main algorithm in detail, and introduce some connections with other research topics. For example, one intriguing connection is with the maximal and non-commutative ranks of matrix spaces, which have recently received considerable attention in algebraic complexity and computational invariant theory. Results from the theory of Tensor Isomorphism complexity class (Grochow--Qiao, SIAM J. Comput. '23) are utilized to simplify the algorithm and achieve the extension to p-groups of Frattini class-2.

November 8th, Borong Zhang (UW-Madison): The inverse scattering problem—reconstructing the properties of an unknown medium by probing it with waves and measuring the medium's response at the boundary—is fundamental in physics and engineering. This talk will focus on how leveraging the symmetries inherent in this problem can significantly enhance machine learning methods for its solution. By incorporating these symmetries into both deterministic neural network architectures and probabilistic frameworks like diffusion models, we achieve more accurate and computationally efficient reconstructions. This symmetry-driven approach reduces the complexity of the models and improves their performance, illustrating how physical principles can inform and strengthen machine learning techniques. Applications demonstrating these benefits will be briefly discussed.

November 15th, Yantao Wu (Johns Hopkins): We consider the problem of estimating the intrinsic structure of composite functions of the type $\mathbb{E} [Y|X] = f(\Pi_\gamma X) $ where $\Pi_\gamma:\mathbb{R}^d\to\mathbb{R}^1$ is the closest point projection operator onto some unknown smooth curve $\gamma: [0, L]\to \mathbb{R}^d$ and  $f: \mathbb{R}^1\to \mathbb{R}^1$ is some unknown  {\it link} function. This model is the generalization of the single-index model where $\mathbb{E}[Y|X]=f(\langle v, X\rangle)$ for some unknown {\it index} vector $v\in\mathbb{S}^{d-1}$. On the other hand, this model is a particular case of function composition model where $\mathbb{E}[Y|X] = f(g(x))$ for some unknown multivariate function $g:\mathbb{R}^d\to\mathbb{R}$. In this paper, we propose an algorithm based on conditional regression and show that under some assumptions restricting the complexity of curve $\gamma$, our algorithm can achieve the one-dimensional optimal minimax rate, plus a curve approximation error bounded by $\mathcal{O}(\sigma_\zeta^2)$. We also perform numerical tests to verify that our algorithm is robust, in the sense that even without some assumptions, the mean squared error can still achieve $\mathcal{O}(\sigma_\zeta^2)$.

Past Semesters